

the observatory for ground-based gamma-ray astronomy

Galactic Science with CTA et al.

CTA Swiss day 24th Nov

Sources, particle acceleration, shocks and feedback

Matteo Balbo & Alison Mitchell

Still unresolved questions:

- The origin of relativistic cosmic particles?
- Where are they accelerated?
- Through which physical mechanisms?
- How do they propagate in the Galaxy?
- How do they influence the environment/evolution? (Galactic feedback, SFR)
- How can we probe them: through direct & indirect measurements?

A zoo of Galactic particle accelerators

INPUTS

Galactic Plane Survey

Galactic population studies

 The growing catalogue of Galactic TeV sources allows the first population studies of the properties and evolution of VHE emission form PWNe and SNRs

- Fermi Bubbles prominent outflows seen in GeV gamma-rays
- Galaxy is dominated by low energy Cosmic Ray pressure
- CR pressure sufficient to launch Galactic wind and can drive gas away, limiting further star formation
- Mass loss of ~few solar masses / yr comparable to star formation rate
- CR driven outflow can alter Galaxy morphology substantially

Star Forming Regions (SFR)

Investigating the relationship between:

- star formation and γ-ray emission
- impact of CRs on their environment

Target	Exposure (hrs)	Array	Year	Zenith
Carina [†]	100	S	1 - 3	< 45°
Cygnus (OB1/OB2)†	130	N	1 - 2	$< 50^{\circ}$
Wd 1 [†]	40	S	0 - 1	$< 50^{\circ}$

Cygnus Region

- Letter to Nature: 1972! First HE y-ray from Cygnus & Cassiopeia (Browning et al.), OSO III satellite and balloon y-ray experiment
- TeV J2032+4130 discovered by HEGRA: first extended TeV source without LE counterpart (Aharonian et al. 2002)
- Fermi-LAT detection of hard and extended GeV y-ray emission in Cygnus
- "Cocoon" of freshly accelerated cosmic rays?
- Extent ~ 50 pc between OB2 and SNR Gamma Cygni
- Origin possibly attributed to Gamma Cygni or/and OB2?

γ-ray binaries?

- accretion-powered jet
- pulsar wind
- colliding wind binary

- Eta Carinae: colliding wind binary
- Periastron passage (closest approach) every ~2023 days
- Spectrum:
 - X-ray thermal shocked gas
 - MeV-GeV: e- IC
 - GeV-TeV: photo-π⁰
- γ-γ absorption and its dependence on orbital phase:
 - → crucial for understanding GeV/TeV emission
- CTA will confirm hadronic acceleration and pair creation

Other CWB candidates: γ² Velorum, WR147, WR125,...

Other binary γ-ray sources: Stellar Novae

>100 MeV Particles accelerated in multiple V339 Del 2013 shock wave in the rapidly expanding 10-10 debris shell F(E) (erg s^{-1} cm $^{-2}$) VHE γ-ray upper limits from MAGIC - constraint on total luminosity of protons to ≤15% of electrons Days since 2013 August 16 Fermi-LAT data Hadronic model ---Leptonic model 100 1000 10000 E (MeV) currently > 10 detected Novae Nova Cygni 2010 in GeV by Fermi-LAT Nova Scorpii 2012 Nova Monocerotis 2012 Nova Delphini 2013 (V407 Cyg) (V1324 Sco) (V959 Mon) (V339 Del) -> not yet IACTs, CTA target? creasing gamma-ray brightness Credits: NASA/DO

Fermi LAT Collab

INFC

 $0.45 < \phi \le 0.9$

Other binary γ-ray sources

X-ray binaries:

- compact neutron star or black hole
- Often with mass transfer from a donor companion
- Wide variety in system properties
- SS433 microquasar (eclipsing binary)

panion	40-13			
	10 ⁻¹³ L	10 ¹²	10	D ¹³ 10 ¹⁴ E (eV)
	PSR	LS	LS I	HESS
	B1259-63 (*)	5039 ^(†)	61° 303 (•)	J0632+057 (°)
$P_{\rm orb}$ (days)	1236.724526(6)	3.90603(8)	26.496(3)	315(5)
e	0.86987970(6)	0.24(8)	0.54(3)	0.83(8)
ω (°)	138.665013(11) ^(‡)	212(5)	41(6)	129(17)
i (°)	$153.3^{+3.2}_{-3.0}$	13-64	10-60	47-80
d (kpc) (1)	2.39 ± 0.18	2.07 ± 0.22	2.63 ± 0.26	2.76 ± 0.34
Spectral type	O9.5Ve	O6.5V(f)	B0Ve	B0Vpe
M_{\star} (M_{\odot})	14.2-29.8	23	12	16
$R_{\star} (R_{\odot})$	9.2	9.3	10	8
T_{\star} (K)	33 500	39 000	22 500	30 000
d _{periastron} (AU)	0.94	0.09	0.19	0.40
d _{apastron} (AU)	13.4	0.19	0.64	4.35
$\phi_{ m periastron}$	0	0	0.23	0.967
$\phi_{ ext{sup. conj.}}$	0.995	0.080	0.036	0.063
$\phi_{ m inf.conj.}$	0.048	0.769	0.267	0.961

SUPC $\phi \le 0.45$ and $\phi > 0.9$

10-12

24 November 20,

Aharonian et al., A&A 460, 743-9 (2006)

Detectable SNRs

- CTA morphological studies:
 - · extract gas target distribution
 - infer the production mechanism

γ-ray spectra cut-off at few 10s TeV

too low to explain the *knee* of the CR spectrum

Detectable SNRs

- CTA morphological studies:
 - · extract gas target distribution
 - · infer the production mechanism

...BUT...

HAWC J2227+610 (G106.3+2.7):

- No cut-off up to 35 TeV (120 TeV if combined with VERITAS)
- · if hadronic:

proton cutoff E_c > 800 TeV!

Galactic Pevatron!

IceCube no detection so far

$$\frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}}} = \frac{E_{\gamma}}{E_{\nu_{\mu}}} \frac{dN_{\gamma}}{dE_{\gamma}}, \qquad E_{\gamma} \, \approx \, 2 \, E_{\nu}$$

 Observable by CTA North & LHAASO

PeVatrons and mol. Clouds

HAWC J2227+610 (G106.3+2.7):

- molecular hydrogen column density (coloured-map)
- HAWC confidence region source position 1-2-3 σ (red contours)
- 1.4 GHz continuum brightness temperature CGPS from 1-100 K (pink contours)
- PSR + MGRO + HAWC + VERITAS centroids (black)
- Also detected in GeV Fermi-LAT data
- The highest energy particles escape the source region at early times.
- Hadronic gamma-ray emission will correlate with target material
- Look for mol. clouds near PeVatrons

Pulsar Wind Nebulae: Vela X, HESS J1825-137

- **Vela X** morphology
 - ★ Radio & HE y-rays: Halo (old population)
 - ★ X-rays & VHE: Cocoon (young population)
- Favours a 2-component model (de Jager et al. 2008)
- HESS J1825-137 morphology
 - Strong energy dependence
 - Determine particle transport
 - Emission > 100TeV seen by HAWC from region
 - Complex nearby sources

24 November 2020

TeV γ-ray emission from the Crab Nebula

- First astrophysical TeV γ-ray source detected (Whipple Collaboration in '89)
- Emission is SSC of leptons accelerated near the termination shock of the pulsar wind

Geminga: an enigma

- Vela pulsar detected by HESS, Geminga pulsar detected by MAGIC
- Both pulsar and extended emission evaded detection for a long time
- Very nearby ~ 250 pc
- Escaping electrons and positrons form an extended halo of GeV and TeV gamma-rays
- Halos a new source class?
- Recently detected by HESS, HAWC ⁸ and Fermi-LAT
- Highly extended emission is now detectable by IACTs

Swiss Galactic Sc

Synergies & multi-messenger observations

Icecube

 the presence/absence of neutrino could unambiguously claim/exclude hadronic particle acceleration

LHAASO:

- The most sensitive γ-ray instrument for energies > 100 TeV (big discovery potential)
 - → Identify possible targets for deep observations
- same latitude as CTA-North
 - → Derive much better background and diffuse emission estimation (fundamental for morphological studies, SNR & SFR)
- perfect complement to CTA:
 - LHAASO high sensitivity (CTA low sensitivity) for diffuse sources
 - LHAASO poor angular resolution (CTA high angular resolution) for morphology studies
- Began scientific observations in 2019; construction works supposed to finish in 2021 (probably prolonged due to pandemic)

The Galactic Centre Region

- HESS detected a bright, steady TeV source, spatially coincident with SgrA*
- Diffuse emission is observed along the plane, within a few degrees of the GC
- The diffuse spectrum extends to 40 TeV with no cut-off
- Indicates presence of PeV particles, but not sufficient to explain Galactic CR flux
- Large zenith observation by northern instruments help to study highest energies

If emission is produced by hadronic interactions with molecular clouds: expect a neutrino counter-part

Summary / take home message

- The scope of Galactic science with CTA is rich and diverse
- Cosmic Rays are an important contribution to Galactic energetics:
 1eV/cm³, comparable to CMB, starlight & radiation fields

 Switzerland is involved in several current and future experimental facilities working towards a better understanding of the high energy universe (incl. HERD, AMS, DAMPE, MAGIC, IceCube, LHASSO, CTA...)

