

I. Goals

- Search for a DM signal in the 18h HESS data towards Wolf-Lundmark-Melotte (WLM) dwarf galaxy in a ROI of 0.12°
- Set upper limits on <σv> if no signal is detected

II. γ-ray flux

$$\frac{d\Phi_{\gamma}}{dE} = \frac{1}{2} \frac{\langle \sigma v \rangle}{4\pi m_{\chi}^{2}} \cdot \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} dE_{\gamma}.$$

 $\int_{\Delta\Omega}\int_{\mathsf{los}}\rho_{\mathsf{DM}}^2(r(s,\alpha_{\mathsf{int}}))dsd\Omega'$

Particle physics factor

J factor

III. Properties of WLM

- First irregular dwarf observed by H.E.S.S. and an IACT experiment
- Isolated source
- Located at ~ 1 Mpc from the Milky Way
- Excellent HI data, photometry and stellar kinematics
- Smooth rotation curve

Rotation curve well constrained

Small uncertainties on the DM profile

Dark matter searches towards WLM dwarf galaxy with H.E.S.S.

C. Armand¹², V. Poireau¹, L. Rinchiuso³, E. Moulin³

[1] LAPP, CNRS, Annecy

[2] LAPTh, CNRS, Annecy

[3] CEA, Saclay

VIII. Conclusion

- No excess has been observed in the data
- Set upper limits for eight annihilation channels
- < σv > ~ 10⁻²⁰ 10⁻²³ cm³.s⁻¹ at 1 TeV
- Alternative target for CTA

/II. Upper limits

Upper limits at 95% C.L. on <σv>

using a log-likelihood ratio

test statistics

MCMC results by J. Read *et al*, 2018 Computation of **75,000** J factors

lo significant excess