

TXS 0506+056: the dawn of multi-messenger neutrinos

- Neutrinos and γ rays are thought to have a common origin in the decays of π 's produced by interactions of cosmic rays in the vicinity of a source
- Despite the discovery of an astrophysical neutrino diffuse flux by IceCube, the sources of astrophysical neutrinos are still unknown
- Hints of such sources might come from a joint neutrino and γ -ray multi-messenger campaign, as happened with TXS 0506+056

The case of TXS 0506+056

- 1. In September 2017, a high-energy neutrino alert ($E_{\nu} > 183~{\rm TeV}$ @ 90% C.L.) was detected by IceCube, coming from a region close to TXS 0506+056
- 2. Several γ -ray telescopes observed an enriched γ -ray activity from a region compatible with the neutrino alert coordinates
- 3. The Geneva group analysed the full IceCube data at the coordinates of TXS 0506+056 and discovered a flare in 2014/2015 with a 3.5σ -level significance

Analysis of the IceCube data at the location of TXS 0506+056: a significant flare was observed in 2014/2015

Artistic representation of the common origin of neutrinos and gamma rays

 γ -ray telescopes that observed an enriched activity from TXS 0506+056 after the IceCube neutrino alert

Recent results and perspectives with CTA

Recent Results

A catalog of gamma-ray emitters was analysed by the IceCube group in Geneva:

- a cumulative time-integrated excess of neutrinos was observed in the northern sky (3.3σ)
- NGC 1068 is the most significant individual source of the catalog (2.9 σ)

NGC 1068 is also found very close to the most significant spot in a time-integrated all-sky search.

A multi-flare time-dependent analysis of the same catalog:

- confirms the neutrino excess at 3.0σ
- reports M87 as the most significant individual source (1.7σ)
- identifies TXS 0506+056 as a multiple flare source

Outlook with CTA

- CTA has 10x better sensitivity and reaches higher energies (300 TeV) than any current telescope
- Thanks to its sensitivity and detectable energy range, CTA will potentially test the galactic origin
 of the neutrino diffuse flux by identifying the electromagnetic counterpart
- The multi-messenger program of CTA will help investigate the sources of astrophysical neutrinos

Time-integrated p-value sky map, zoom of the most significant spot. The cross marks the location of NGC 1068

CTA sensitivity (blue) and diffuse flux of astrophysical neutrinos (black)

