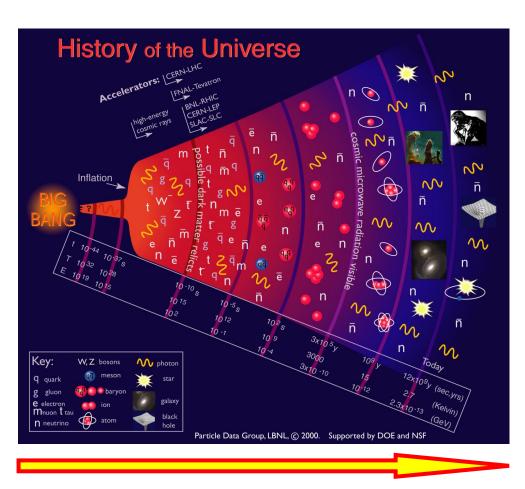
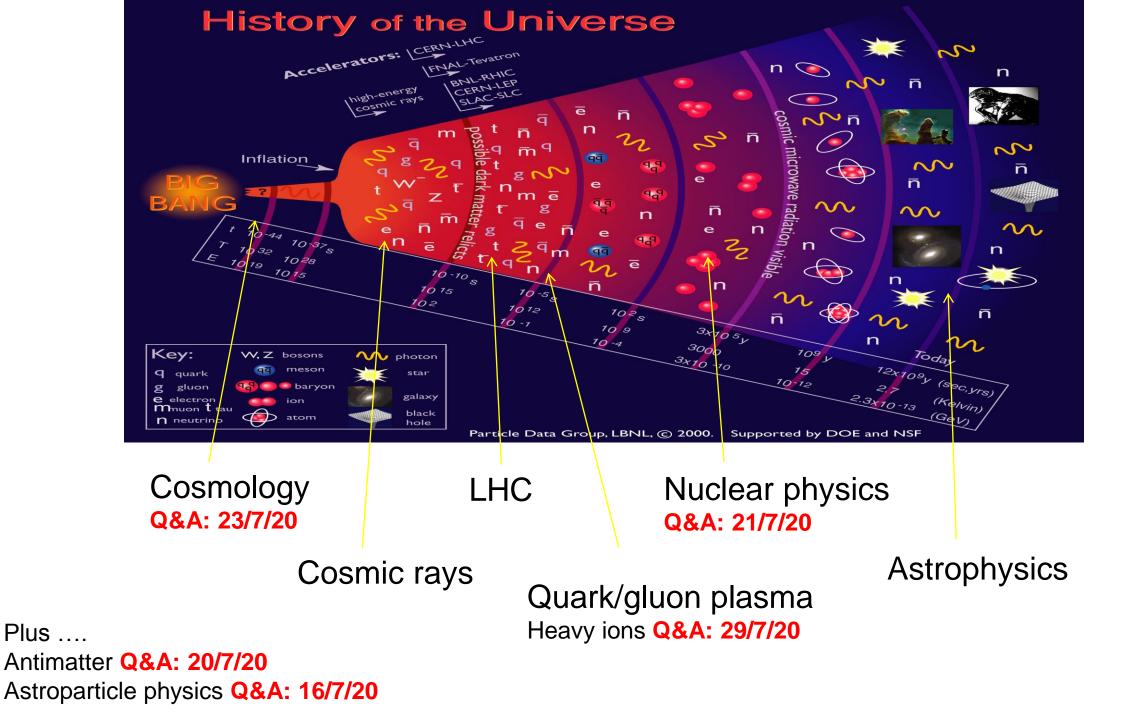
A brief tour of the **Particle World**

(and your lecture programme)

Tara Shears, University of Liverpool

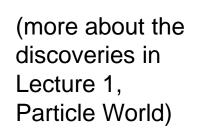

Overview

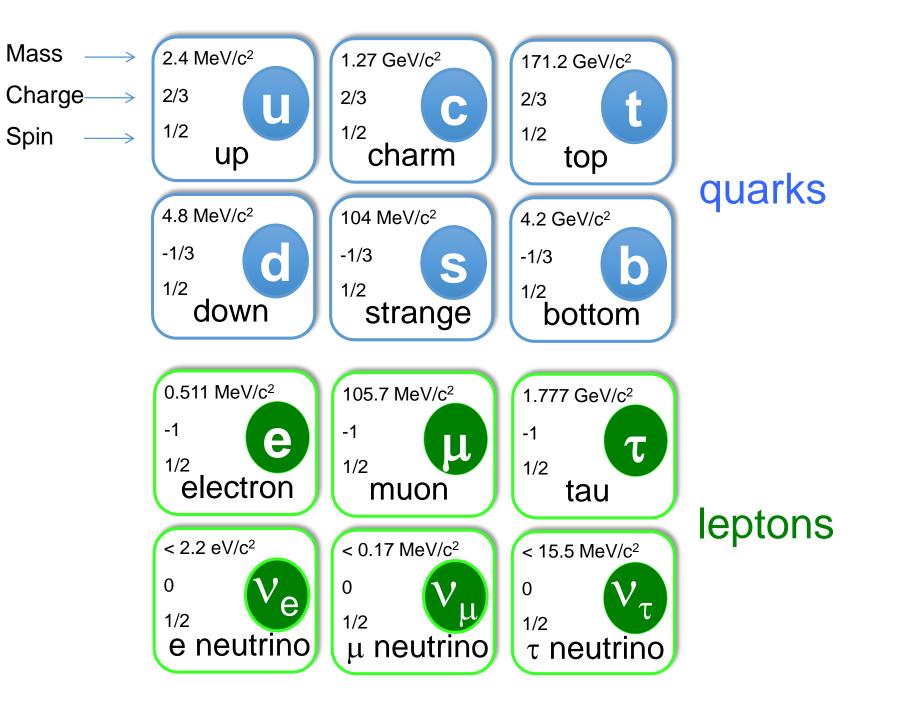
- What particle physics describes
- What we know (and what we don't)
 - The Standard Model: matter; forces; Higgs.
- Experiments; performing research
- Outstanding questions and mysteries ...


... just a taster of what's waiting in your lectures

The Universe

BIG BANG



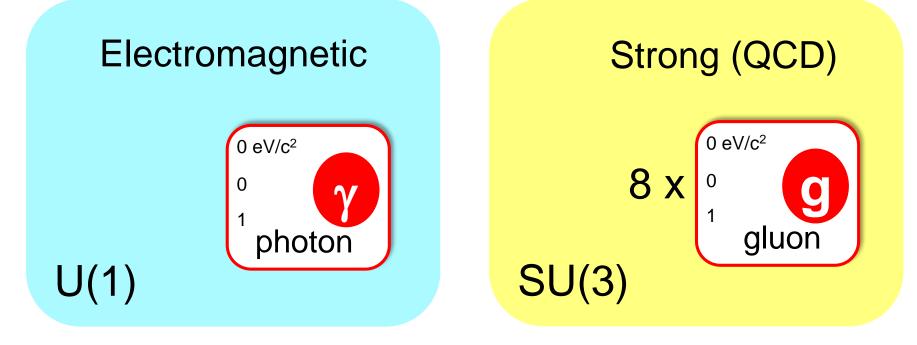

NOW

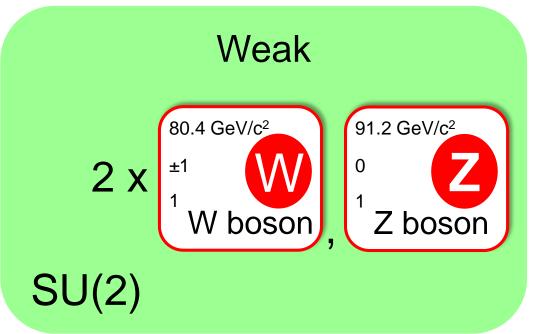
Matter

$\begin{array}{cccc} \mathbf{U} & \mathbf{C} & \mathbf{t} & \mathbf{e} & \mathbf{\mu} & \mathbf{\tau} \\ \mathbf{d} & \mathbf{s} & \mathbf{b} & \mathbf{v}_{e} & \mathbf{v}_{\mu} & \mathbf{v}_{\tau} \\ \mathbf{quarks} & \text{leptons} \end{array}$

and ... antimatter ...

Einstein's equation of motion*:


$$E^2 = p^2 c^2 + m^2 c^4$$


Two energy solutions for the same mass;

- Matter
- Antimatter

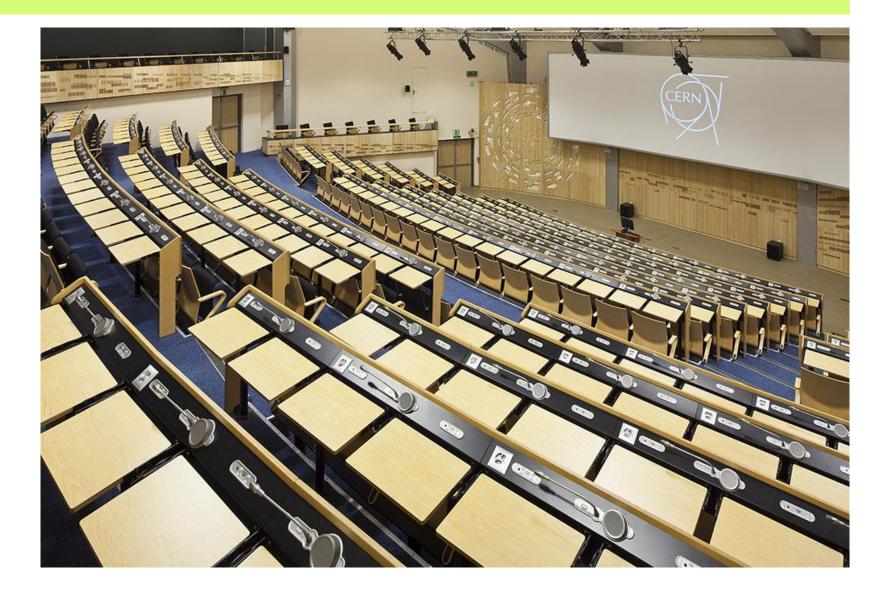
Every fermion has an antimatter version. Same mass, opposite charge eg. antiquark \bar{q} , antimuon μ^+ , antineutrino $\bar{\nu}$

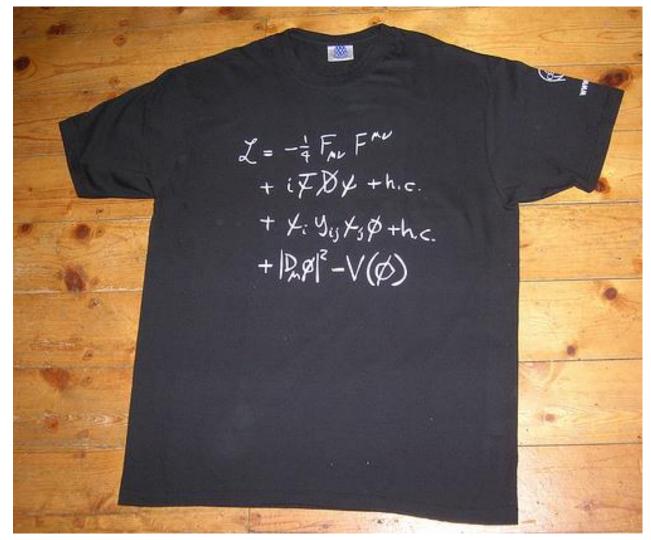
*(and others, more famously Dirac)

Note: No gravity!!

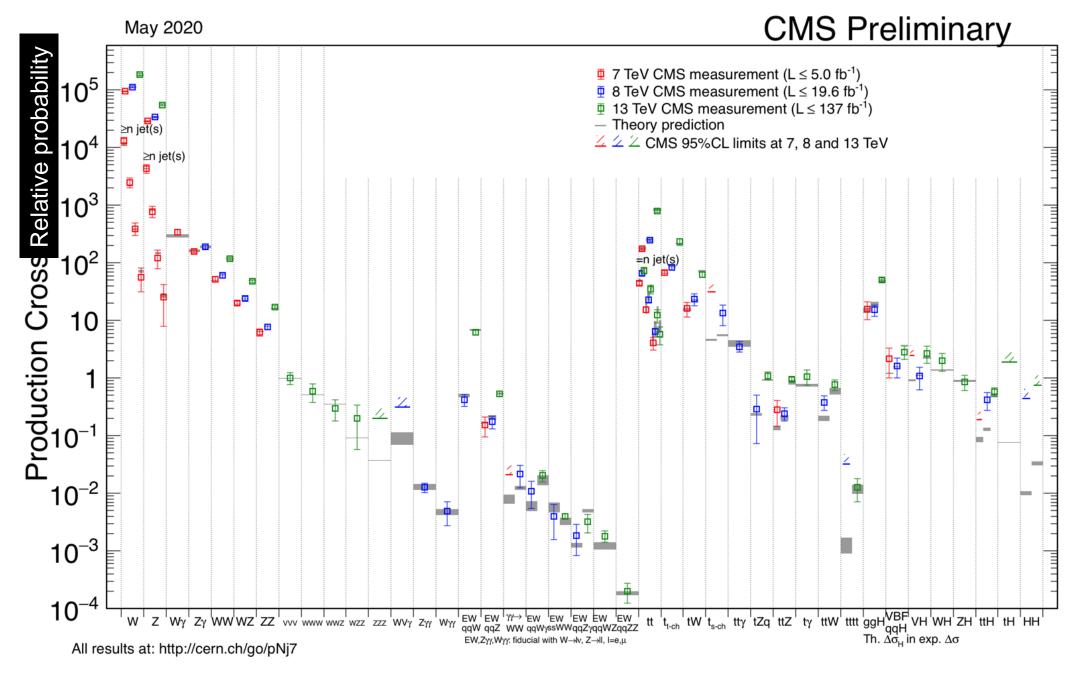
EM force	Weak force	Strong force					
Electric charge (1)	Weak charge (2)	Colour charge (3)					
Massless photon	Massive W [±] ,Z	8 massless gluons					
Coupling <mark>g</mark>	Coupling <mark>g</mark> w	Coupling <mark>g</mark> s					
Abelian	Non-abelian	Non-abelian					
Only charged	Only left handed	Only quarks couple					
particles couple	particles couple						
	quark mixing (3 generations, CP)						
	Neutrino mixing (3 generations, CP)						
wn/ not predicted							

Value unknov


(Lecture 2 Particle World)



~ 8 years later .. you would have been here ..



Standard Model

- Standard Model (SM)
- Quantum field theory based on lagrangians
- We use the SM to predict experimental observations

Standard Model **Q&A 22/7/20** HEP theory concepts **Q&A 17/7/20**

Successes

Consistent with experiment

No significant deviations seen

Predictions (eg Higgs) proven

BUT

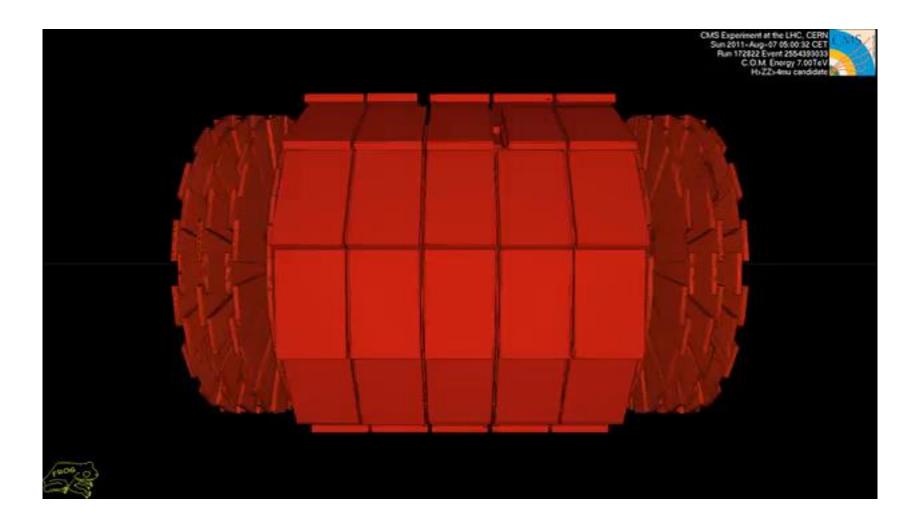
Incomplete (eg. no gravity)

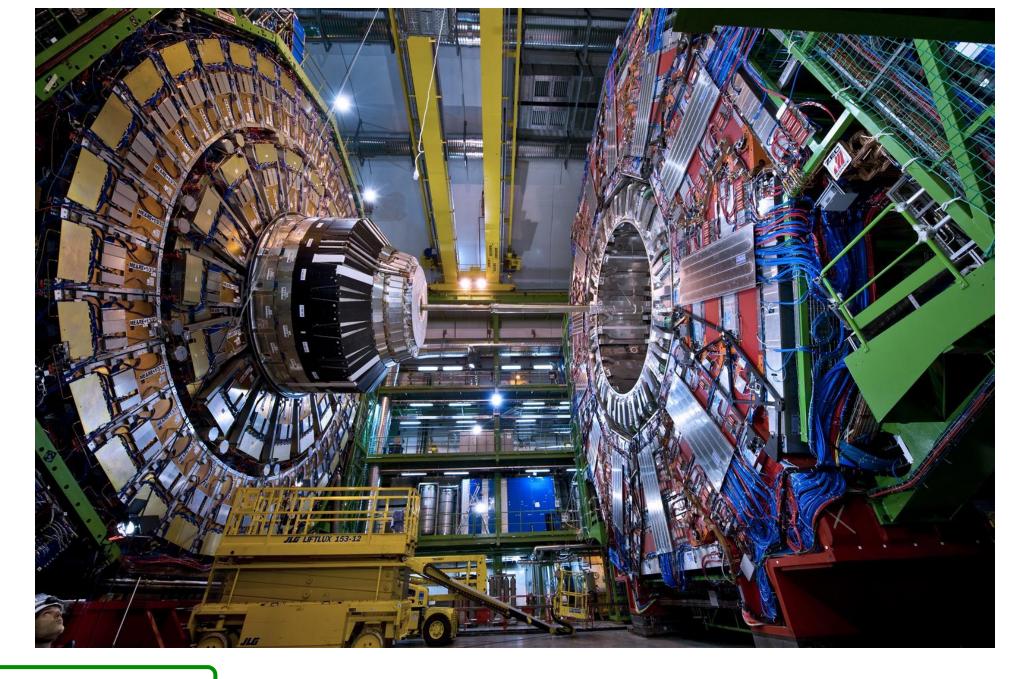
Few explanations

Many ad-hoc additions to fit experimental data

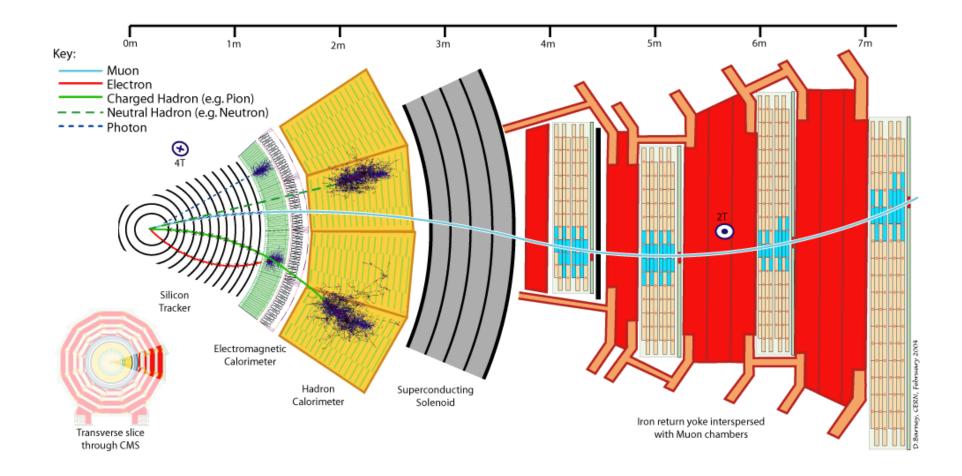
Many mysteries...

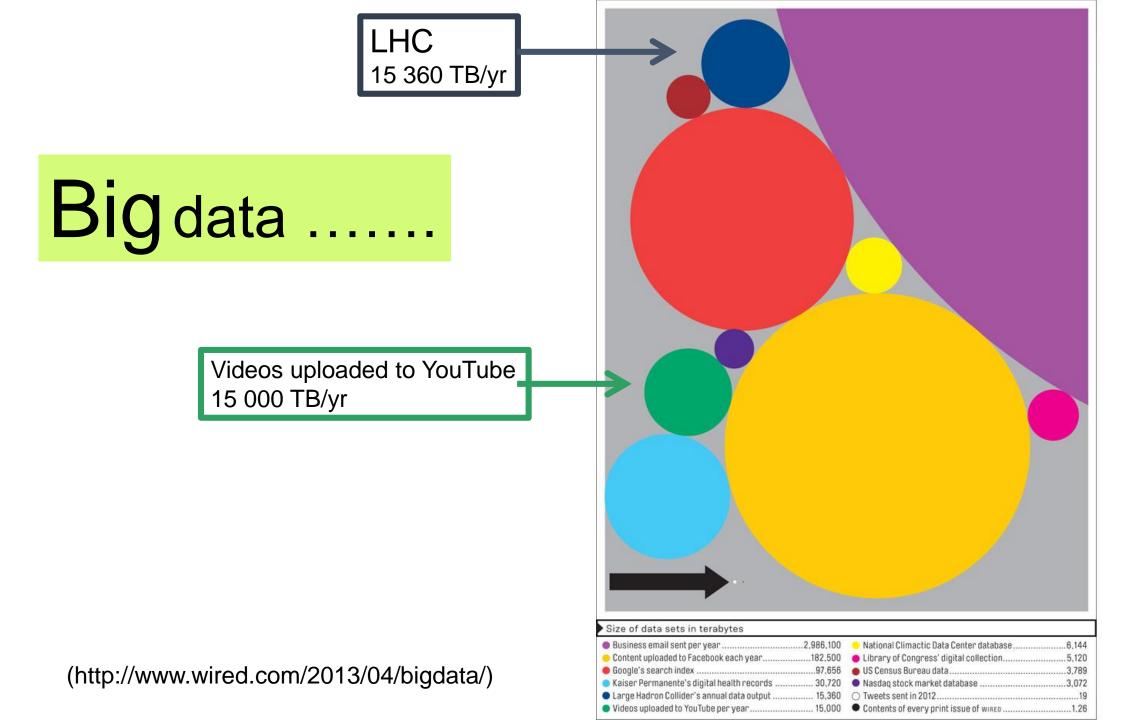
Need to find a breakdown to move forward. **Need experiments.**

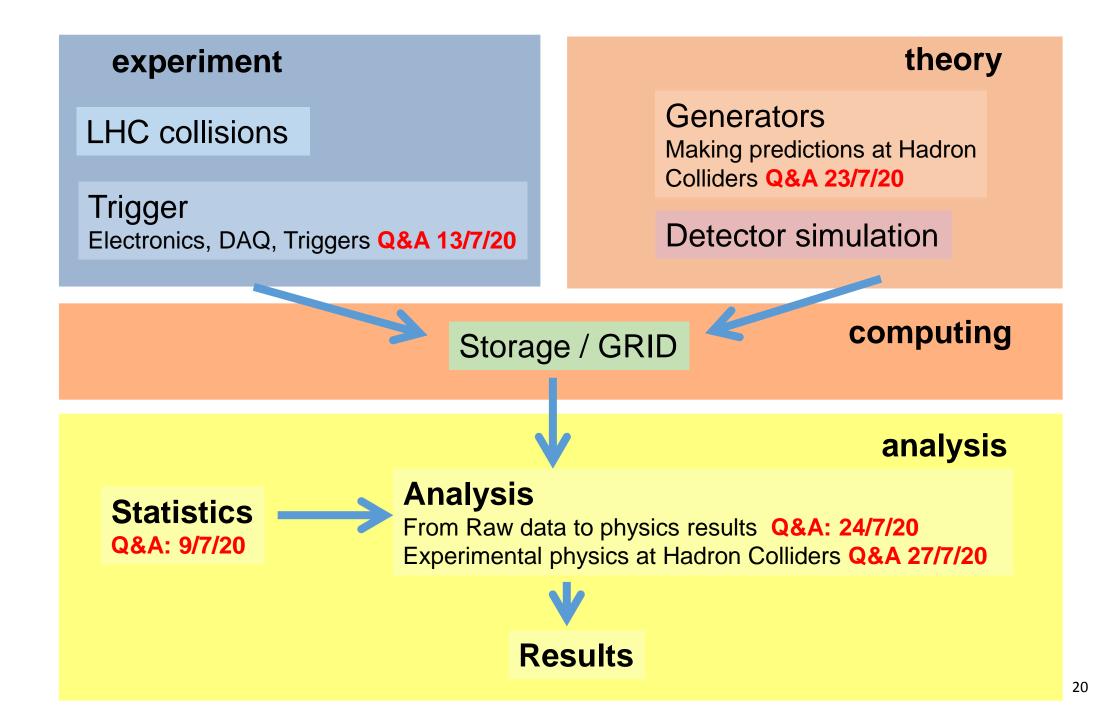

Accelerators

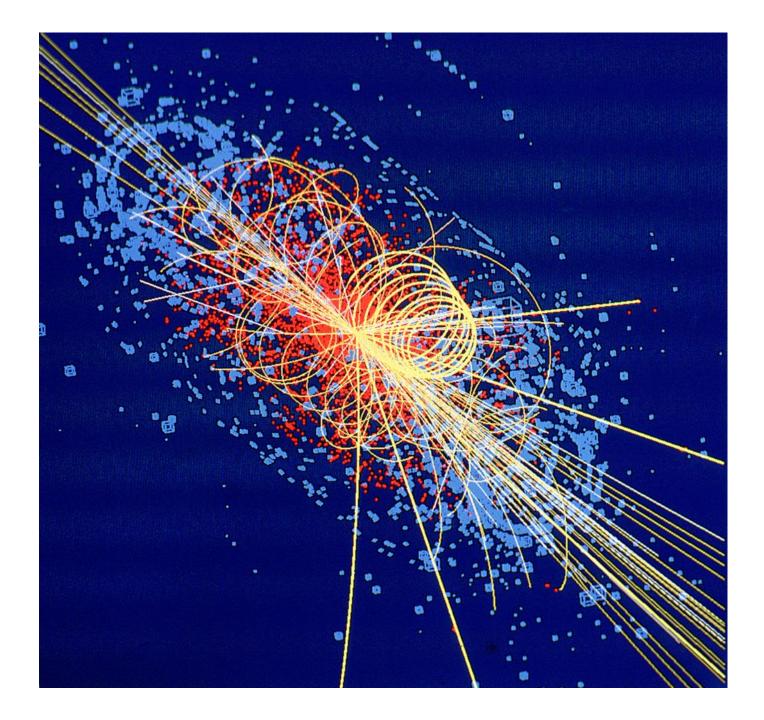

Eg. Large Hadron Collider:

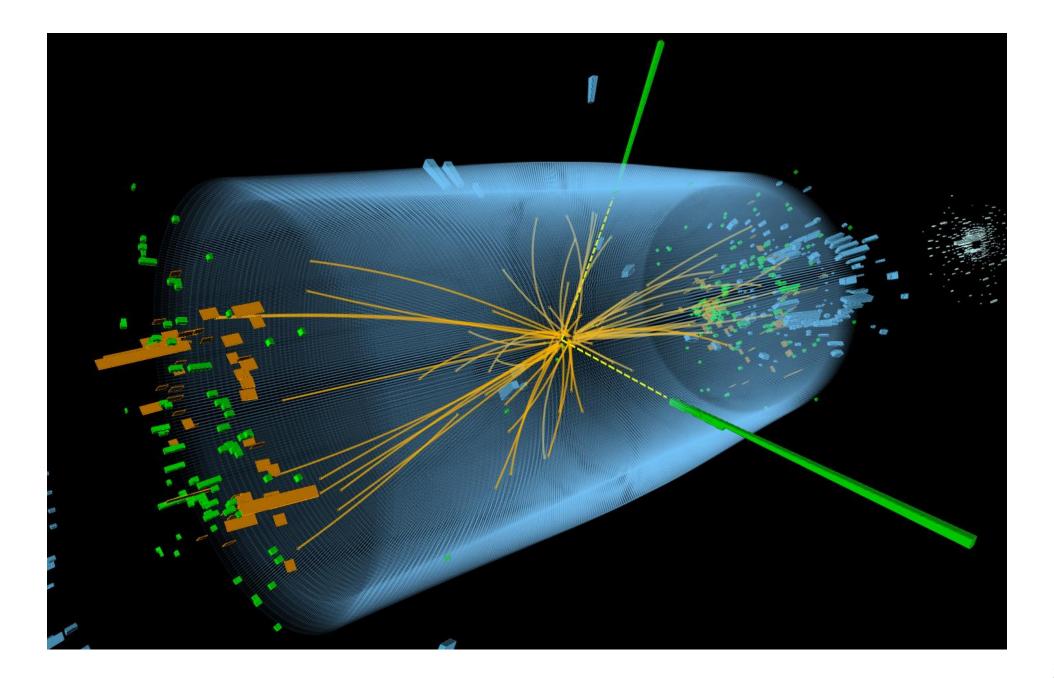
- High energy (√s=14 TeV)
- Circular
- Proton beams
- Up to 10⁸ collisions/s


Particle Accelerators and Beam Dynamics Q&A 14/7/20 Accelerator Technology Challenges Q&A 15/7/20


Detectors Q&A: 10/7/20

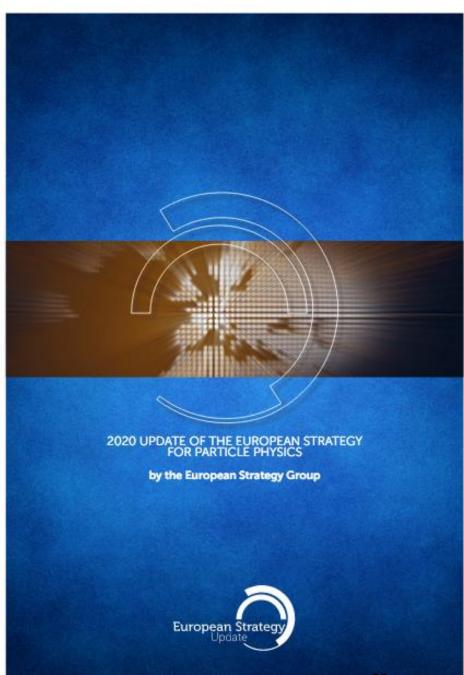

(+lecture 3, Particle World)




Identify particles by characteristic signatures in experiment Add computers: calculate particle paths and energies

Add theory: infer what fundamental process happened

Future facilities?


Too many open questions to stop here.

- New neutrino facility?
- New high energy machine?
- New linear collider?

June 19 2020: European Strategy for Particle Physics released

Physics at lepton colliders Future collider projects **Q&A: 6/8/20**

https://cds.cern.ch/record/2720129/files/Update%20European%20Strategy.pdf

The known unknowns

- Higgs still don't know a lot about it
- Gravity?
- Antimatter?
- Dark matter, dark energy?
- A unified theory?

+ unknown unknowns.....

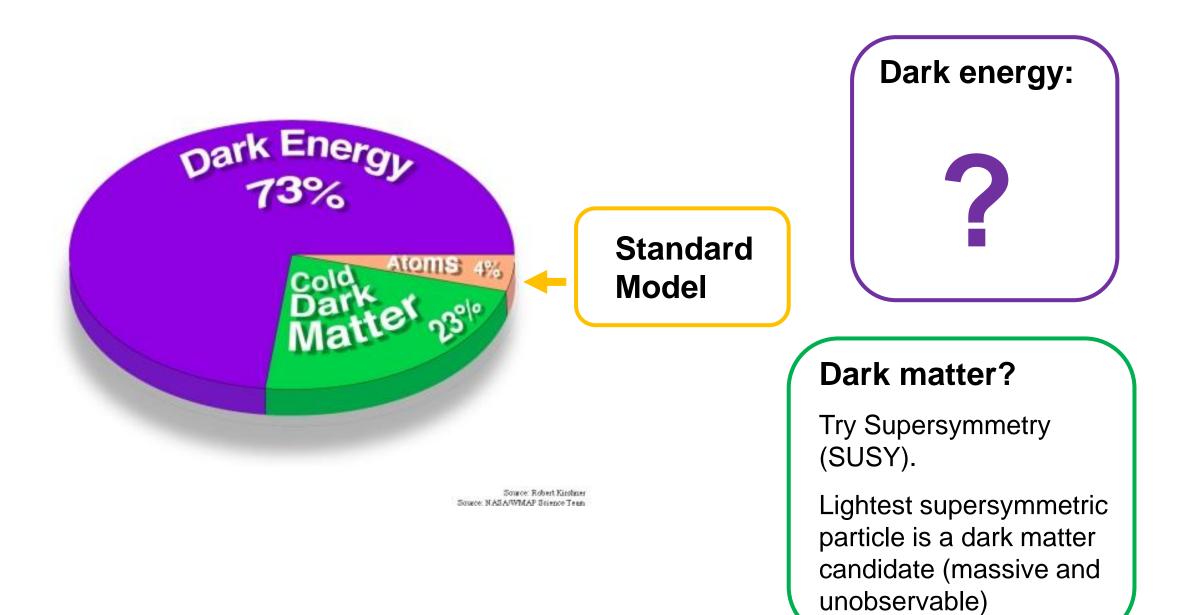
Gravity

Can't describe it in SM

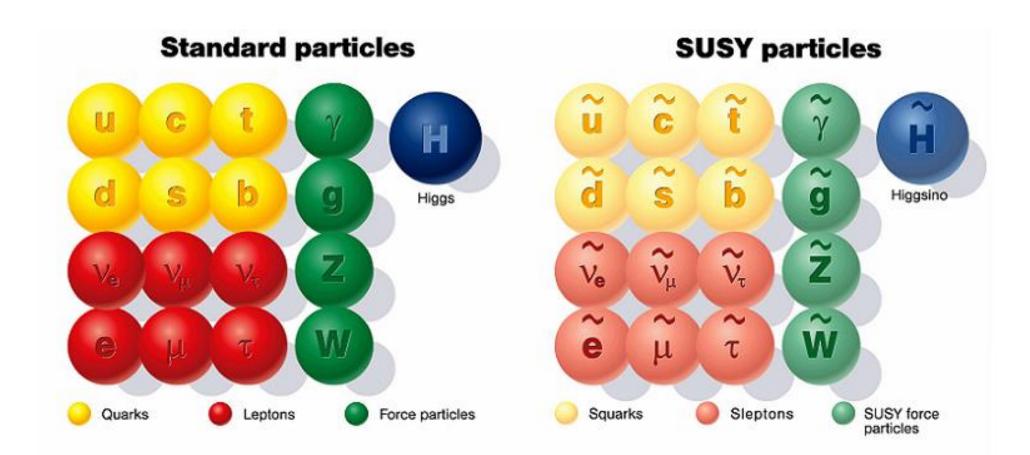
Can include it in string theory – not very testable (yet)

Large extra dimensions could be observed at LHC (no sign so far...)

String theory Q&A 30/7/20

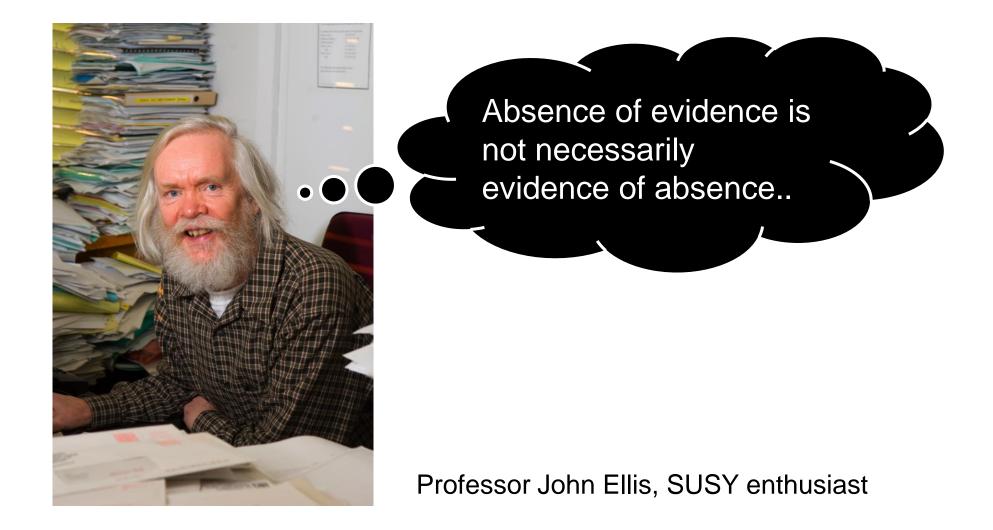

CP violation

Consistent picture in SM but can we explain matter – antimatter asymmetry of the universe?

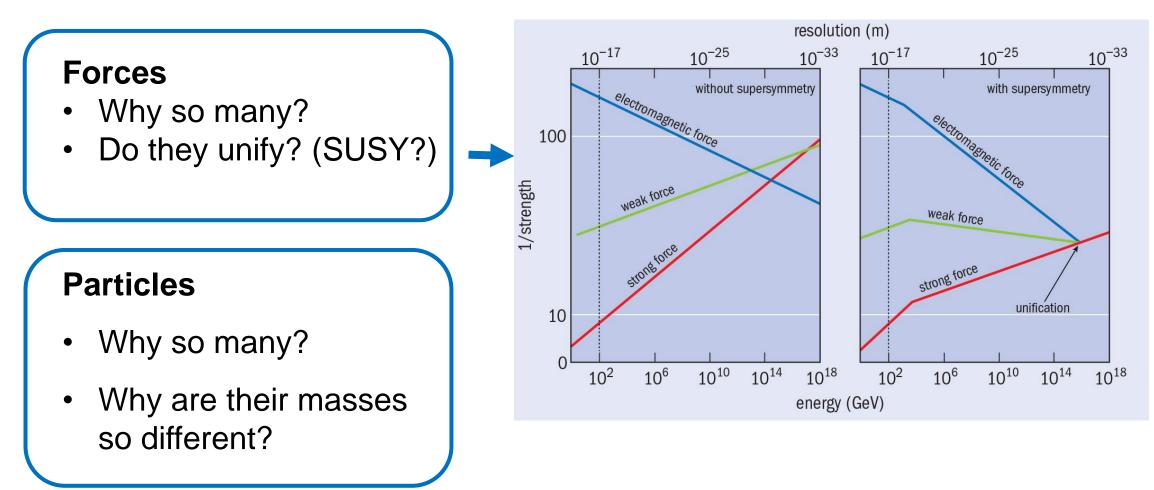

Does the answer lie in new physics?

Antimatter **Q&A 20/7/20** Flavour physics **Q&A 4/8/20**

Beyond the Standard Model Q&A 31/7/20


ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$


	Model	Signature ∫⊥	<i>dt</i> [fb ⁻	Mass limit		Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	0 e, μ 2-6 jets E_{T}^{miss} mono-jet 1-3 jets E_{T}^{miss}	139 36.1	<i>q</i>	1.9 m(\tilde{k}_1^0)<400 GeV m(\tilde{d})-m(\tilde{k}_1^0)=5 GeV	ATLAS-CONF-2019-040 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	$0 e, \mu$ 2-6 jets E_T^{miss}	139	ž ž	2.35 $m(\tilde{\chi}_1^0)=0$ GeV	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	$\begin{array}{ccc} 3 \ e, \mu & \ 4 \ { m jets} & \ ee, \mu \mu & \ 2 \ { m jets} & \ E_T^{ m miss} \end{array}$	36.1 36.1	ξ ğ	1.85 $m(\tilde{x}_1^0) < 800 \text{ GeV}$ 1.2 $m(\tilde{g}) \cdot m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	139 139	ğ Z	1.97 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ 1.15 $m(\tilde{g}) -m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1} \ e,\mu & \text{3} \ b & E_T^{\text{miss}} \\ \text{SS} \ e,\mu & \text{6 jets} \end{array}$	79.8 139	ž ž	2.25 m(k˜1)<200 GeV 1.25 m(ğ)-m(k˜1)=300 GeV	ATLAS-CONF-2018-041 1909.08457
ks DN	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$	Multiple Multiple	36.1 139	b1 Forbidden 0.9 b1 Forbidden 0.74	$m(\tilde{\chi}_1^0)$ =300 GeV, BR $(b\tilde{\chi}_1^0)$ =1 $m(\tilde{\chi}_1^0)$ =200 GeV, $m(\tilde{\chi}_1^1)$ =300 GeV, BR $(b\tilde{\chi}_1^1)$ =1	1708.09266, 1711.03301 1909.08457
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$0 e, \mu$ $6 b$ E_T^{miss}	139	Š1 Forbidden Š1 0.23-0.48	$\begin{array}{c} \textbf{0.23-1.35} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \ \text{GeV}, \ m(\tilde{\chi}_{1}^{0}) {=} 100 \ \text{GeV} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \ \text{GeV}, \ m(\tilde{\chi}_{1}^{0}) {=} 0 \ \text{GeV} \end{array}$	1908.03122 1908.03122
squarks oduction	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet E_T^{miss}	139	\tilde{t}_1	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
odt	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, μ 3 jets/1 b E_T^{miss}	139	ĩ ₁ 0.44-0.59	$m(\tilde{\chi}_1^0)$ =400 GeV	ATLAS-CONF-2019-017
r d	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b\nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e, \mu, \tau$ 2 jets/1 b E_T^{miss}	36.1	\tilde{t}_1	1.16 m($\tilde{\tau}_1$)=800 GeV	1803.10178
3 rd ge direct	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	$0 e, \mu$ $2 c$ E_T^{miss}	36.1	č 0.85	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1805.01649
3 rd dir		0 e, μ mono-jet E_T^{miss}	36.1	$\vec{t}_1 = 0.46$ $\vec{t}_1 = 0.43$	$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1805.01649 1711.03301
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0 \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	$\begin{array}{cccc} 1-2 \ e, \mu & 1-4 \ b & E_T^{\text{miss}} \\ 3 \ e, \mu & 1 \ b & E_T^{\text{miss}} \end{array}$	139 139	<i>ī</i> ₁ 0.0 <i>ī</i> ₂ Forbidden 0.86	57-1.18 $m(\tilde{\chi}_2^0)=500 \text{ GeV}$ $m(\tilde{\chi}_1^0)=360 \text{ GeV}, m(\tilde{r}_1)-m(\tilde{\chi}_1^0)=40 \text{ GeV}$	SUSY-2018-09 SUSY-2018-09
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ccc} 3 \ e, \mu & E_T^{\mathrm{miss}} \\ ee, \mu \mu & \geq 1 \ \mathrm{jet} & E_T^{\mathrm{miss}} \end{array}$	139 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.64 $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.205 $	$\mathfrak{m}(\tilde{\chi}_{1}^{0})=0$ $\mathfrak{m}(\tilde{\chi}_{1}^{\pm})-\mathfrak{m}(\tilde{\chi}_{1}^{0})=5$ GeV	ATLAS-CONF-2020-015 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	$2 e, \mu \qquad E_T^{\text{miss}}$	139	$\tilde{\chi}_{1}^{\pm}$ 0.42	$m(\tilde{\chi}^0_1)=0$	1908.08215
	$\tilde{\chi}_1^+ \tilde{\chi}_2^0$ via Wh	$0-1 e, \mu$ $2 b/2 \gamma$ E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden 0.74	$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
st <	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	$2 e, \mu$ E_T^{miss}	139		$\mathbf{m}(\tilde{\ell},\tilde{\nu})=0.5(\mathbf{m}(\tilde{\ell}_1^{\pm})+\mathbf{m}(\tilde{\ell}_1^{0}))$	1908.08215
EW direct	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2τ E_T^{miss}	139	τ̄ [τ̃ _L , τ̃ _{R,L}] 0.16-0.3 0.12-0.39	$m(\tilde{\chi}_1^0)=0$	1911.06660
0	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	$\begin{array}{ccc} 2 \ e, \mu & 0 \ { m jets} & E_T^{ m miss} \\ e e, \mu \mu & \geq 1 \ { m jet} & E_T^{ m miss} \end{array}$	139 139	₹ 0.256	$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10$ GeV	1908.08215 1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$\begin{array}{lll} 0 \ e, \mu & \geq 3 \ b & E_T^{\text{miss}} \\ 4 \ e, \mu & 0 \ \text{jets} & E_T^{\text{miss}} \end{array}$	36.1 36.1	H 0.13-0.23 0.29-0.88 H 0.3 0.3	$BR(ilde{\chi}^0_1 o h ilde{G})$ =1 $BR(ilde{\chi}^0_1 o Z ilde{G})$ =1	1806.04030 1804.03602
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^{miss}	36.1	$ \tilde{\chi}^{\pm}_{1} = 0.46 $	Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
ng-	Stable g R-hadron	Multiple	36.1	ζθ.	2.0	1902.01636,1808.04095
Loi pê	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Multiple	36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$	2.05 2.4 m($\tilde{\chi}_1^0$)=100 GeV	1710.04901,1808.04095
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 <i>e</i> , <i>µ</i>	139	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625	.05 Pure Wino	ATLAS-CONF-2020-009
	$\begin{array}{l} \chi_1\chi_1/\chi_1, \chi_1 \to Z\ell \to \ell\ell\ell\\ LFV \ pp \to \tilde{\nu}_\tau + X, \tilde{\nu}_\tau \to e\mu/e\tau/\mu\tau \end{array}$	εμ,ετ,μτ	3.2	$\tilde{\gamma}_{r}$	1.9 $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \to WW/Z\ell\ell\ell\ell\nu\nu$	$4 e, \mu$ 0 jets E_T^{miss}	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] $ 0.82	1.33 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-5 large- <i>R</i> jets	36.1	$\tilde{g} = [m(\tilde{X}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}]$	1.3 1.9 Large $\lambda_{112}^{\prime\prime}$	1804.03568
RPV	$gg, g \rightarrow qq x_1, x_1 \rightarrow qqq$	Multiple	36.1		.05 2.0 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like	ATLAS-CONF-2018-003
RF	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$	Multiple	36.1	$\tilde{t} = [\lambda''_{323} = 2e-4, 1e-2]$ 0.55	.05 $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow bbs$	$\geq 4b$	139	ĩ Forbidden 0.9	$m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2020-016
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2 <i>b</i>	36.7	$\tilde{t}_1 \ [qq, bs]$ 0.42 0.61		1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, μ 2 b 1 μ DV	36.1 136	$\begin{bmatrix} \tilde{I}_1 & & \\ \tilde{I}_1 & [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} < 3e-9] \end{bmatrix} $	0.4-1.45 BR $(\tilde{i}_1 \rightarrow be/b\mu) > 20\%$ 1.6 BR $(\tilde{i}_1 \rightarrow q\mu) = 100\%$, $\cos\theta_i = 1$	1710.05544 2003.11956
	a selection of the available ma nomena is shown. Many of the		1)-1	1 Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

29

What's fundamental?

Conclusions

Particle physics describes the smallest structures in the Universe

Theory: the Standard Model Works fabulously well Is fabulously frustrating

Many big mysteries to solve.