Creating A Tier-3 Compute Cluster leveraging Amazon Web Services Infrastructure

> SUPER Grant Recipient William Barden California State University, Fresno

Premise

Existing Compute Clusters

- Large Hardware Investment
 - Hardware exists as a 'snapshot'
 - Requires large amount of real estate
 - Ongoing maintenance costs
 - Difficult to upgrade

Cloud Infrastructure

- Modular
- Dynamically Scalable
- Virtualization makes hardware upgrades trivial

Amazon Web Services

Flexibility

- Provides the ability to create virtual machines and networks
 - Virtual Machine instances ('EC2's) can be networked
 - Creation of a 'bastion' or gateway for security purposes
 - Machines and processing cores can be spun up on demand
 - Deploying EC2s is trivial

Cost and Labor Reductions

- Amazon handles Layers 1 and 2
- Current project implementation implies a "pay as you go" model
- No up-front hardware investment.

EC2: An Introduction

- Amazon's Virtual Machine Service
 - Each Virtual Machine is referred to as an EC2 instance
 - Can be instantiated relatively quickly ~5 minutes
 - Supports most major operating systems and Linux Distributions
 - Can be configured as remote CLI workstations or as servers depending on choice of operating system

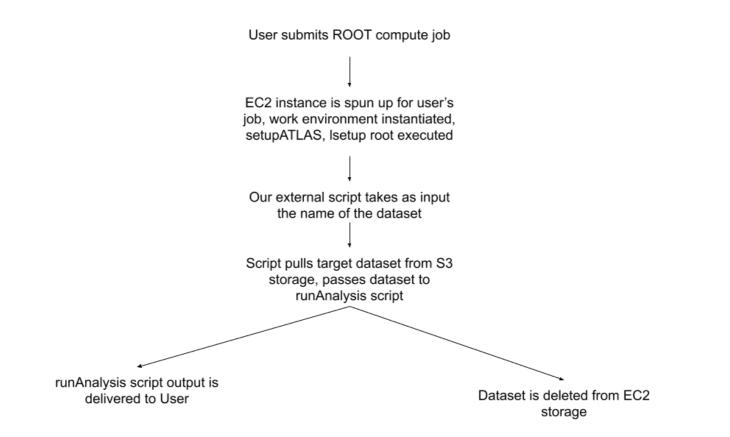
Project Goals

- Develop and Deploy a Working Tier-3 Compute Cluster in a virtualized environment for us by US ATLAS Group members
 - Replicate LXPlus Functionality
 - Accept and complete compute jobs
 - Provide Robust computational options for various research institutions
 - Implment CERN's Virtual Machine File System (CVMFS)
 - Configure to allow for setupATLAS and Isetup root commands from the GRID
 - Must be a viable alternative to in-house compute clusters from both a financial and workflow perspective

Project Progress and Evolution

- Settle on an Operating System
 - Initial testing done on Ubuntu and Debian-based working environments
 - Rapidly pivoted to CentOS to better mesh with existing documentation for CVMFS, GRID
 - Utilize existing free and Open-Source Amazon Machine Image (AMI) for CentOS7
 - Developed and Documented deployment of CVMFS and related dependencies

COVID-19 Impact


- Project Suffered minimal interruption (~two to three weeks) due to to Coronavirus
- Campus closure forced work to continue at home
- Work continues after adjustment, project team able to communicate via email, slack, and video conferencing.

Storage Needs

Data Sets

- Vary wildly in size, will need to be able to handle large (100 GB to 1TB) BLOBs of Data
- Multiple researchers will be working off of the same dataset, does not make sense to force users to provide their own dataset
- Resolve to utilize Amazon's S3 storage service to create a centralized repository for available datasets
- Implement usage of S3 'bucket' and modified ROOT scripts to call S3 objects into EC2

CVMFS → **ROOT**→ **S3** Workflow

Dependency Issues and CentOS7

- In order to implement automated usage of S3 storage solutions, additional packages are required
- The Dependencies for these packages, including gcc are either woefully out of date or non-existent in CentOS7 repositories
- Accordingly, we have now shifted focus to CentOS8, with minimal friction.

Documentation

All Project work is being Documented

- Rapidity of EC2 deployment allows for quick and easy testing of virtual machines as testbeds
- Virtualization allows for rapid replication of both blockers and solutions.

Continuing Work

- Implement AWS-CLI and AWS SDK to automate S3 storage dataset utilization
- Other team members are working on implementation of other systems incuding:
 - HTCondor
 - Pandas
 - Virtual Private Cloud Infrastructure
 - Web Interface for job submission

Accomplishments Thus Far

- The Project has implemented a secure Virtual Private Cloud with a bastion on AWS Infrastructure
- Deployed CentOS based EC2 instances
- Deployed CVMFS/GRID implementation
- SetupATLAS and Isetup root commands working
- Able to execute ROOT commands and analyses
 on AWS virtual machines
- Implemented S3 "bucket" storage for holding datasets

Thanks to:

- US ATLAS Group for their ongoing support and the SUPER Grant, making this project possible
- CERN
- All support staff
- Fresno State's Technology Services
 Department
- Our friends at AWS
- Professors Harinder Bawa and Yongsheng Gao for their guidance and support