SMEFT טS HEFT
 "Pros and cons"

MBI 2022 Shanghai

Raquel Gomez Ambrosio

Based largely on 2204.01763, with F. Llanes-Estrada, A. SalasBernardez, and JJ Sanz-Cillero

SMEFT vs HEFT

Similarities

And
Differences

outline

* The SMEFT: LHC's favourite
* HEFT: the old classic
* Geometrical interpretations
* HEFT in terms of SMEFT

Looking for Pbysies Beyond the SM

* SMEFT: LHC's favourite

$$
\mathscr{L}_{S M E F T}=\mathscr{L}_{S M}+\sum_{n, i} \frac{c_{i}^{(n)}}{\Lambda^{n-4}} \sigma_{i}^{(n)}
$$

* Assume SM symmetries and fields
* Assume new physics is weakly coupled (clear cut-off scale Lambda)
* Assume traditional EWSB mechanism (H in a doublet)

SMEFT in a nutshell

* Pros and cons:
* A theory of deviations: Natural to parametrise small deviations from the SM (99\% of the time!)
* Couplings get modified as:

$$
V_{E F T}=V_{S M}\left(1+\frac{g_{6}}{\Lambda^{2}}\right)
$$

* Similarly for propagators, wave functions, input parameters
* Not all deviations (ie BSM models) are allowed

SMEFT operators

* Warsaw basis -> 59/2499 operators

* dim 8 basis (Murphy et al) -> 993/44807

Comparing witf LHC data

* Amplitude analogous to SM one:

$$
\sigma_{E F T}=\sigma_{S M}+\underbrace{\sigma_{\text {int }, 6}}_{\text {linear }}+\underbrace{\sigma_{\text {pure }, 6}+\sigma_{\text {int }, 8}}_{\text {quadratic }}+\ldots
$$

* Not uniquely defined (results are truncation-dependent)
* Other than that, technically similar to SM-LHC computations

LHC Global fits

* In the absence of new particles, our main effort goes into constraining SMEFT coefficients

SM-to-SMEFT relatively easy to implement on the
technical tools
fitmaker, smefit, et al.

(2) HEPData

See for example 2101.03180

SMEFT mimics the SM structures

* In particular:
* $V_{H H H}^{S M}=v V_{H H H H}^{S M}$ and $V_{W W H}^{S M}=v V_{W W H H}^{S M}$
* (consequence of the EWSB mechanism)

> This is the main feature that we can use to falsify smeft

SMEFT@NLO

* The SMEFT Lagrangian can be renormalised in the same way as the SMI one

See f. ex. 1505.03'06. Ghezzi, RGA, Passarino, Uccirati

HEFT: an old classic

* Originally the non-linear sigma model (for Pions)
* In principle a QCD Lagrangian -> inspired the EWChL
* Very natural for the study of the Higgs-Goldstone interactions
* I.e: scattering of longitudinal gauge bosons -> Vector boson fusion/scattering
* Natural for strongly coupled new physics

EWCbL HEFT natural to study VBF/VBS

* Madrid UCM and UAM
* Strongly coupled theories beyond the Standard Model. Antonio Dobado, Domènec Espriu. Prog.Part.Nucl.Phys. 115 (2020) 103813
* Unitarity, analyticity, dispersion relations, and resonances in strongly interacting WL WL, ZL ZL, , and hh scattering. R.Delgado, A Dobado, F Llanes-Estrada.

Phys.Rev.D 91 (2015) 7, 075017

* Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis. R.L. Delgado, A. Dobado, D. Espriu, C. Garcia-Garcia, M.J. Herrero et al. JHEP 11 (2017) 098
* One-loop $W \rightarrow W L W L$ and $W \rightarrow$ ZL ZL from the Electroweak Chiral Lagrangian with a light Higgs-like scalar. R.L. Delgado, A. Dobado, M.J. Herrero, J.J. Sanz-Cillero. JHEP O7 (2014) 149

$$
H=\frac{1}{\sqrt{2}}\binom{\phi_{1}+i \phi_{2}}{\phi_{4}+i \phi_{3}}
$$

$$
h \quad \text { HEFT } \quad \text { and } \quad \vec{n}=\left(\begin{array}{c}
n_{1}=\pi_{1} / v \\
n_{2}=\pi_{2} / v \\
n_{3}=\pi_{3} / v \\
n_{4}=\sqrt{1-n_{1}^{2}-n_{2}^{2}-n_{3}^{2}}
\end{array}\right)
$$

* SMMEFT scalar sector -> Linear sigma model
* HEFT -> Non-linear sigma model

Strongly interacting Higgs bosons
Thomas Appelquist and Claude Bernard
Phys. Rev. D 22, 200 - Published 1 July 1980

HEFT: an old classic

* First differences: Power counting

10

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NLO} \mathrm{HEFT}} & =\frac{1}{2}\left[1+2 a \frac{h}{v}+b\left(\frac{h}{v}\right)^{2}\right] \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{j}\left(\delta_{i j}+\frac{\omega^{i} \omega^{j}}{v^{2}-\omega^{2}}\right)+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h \\
& +\frac{4 \alpha_{4}}{v^{4}} \partial_{\mu} \omega^{i} \partial_{\nu} \omega^{i} \partial^{\mu} \omega^{j} \partial^{\nu} \omega^{j}+\frac{4 \alpha_{5}}{v^{4}} \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{j} \partial^{\nu} \omega^{j}+\frac{g}{v^{4}}\left(\partial_{\mu} h \partial^{\mu} h\right)^{2} \\
& +\frac{2 d}{v^{4}} \partial_{\mu} h \partial^{\mu} h \partial_{\nu} \omega^{i} \partial^{\nu} \omega^{i}+\frac{2 e}{v^{4}} \partial_{\mu} h \partial^{\nu} h \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{i}
\end{aligned}
$$

HEFT: caveats

* The correspondence between SM/ SMEFT goldstones and the HEFT goldstones is not one-to-one:
* $w^{+} w^{-} \rightarrow n \times h \quad \neq \quad \phi^{+} \phi^{-} \rightarrow n \times h$
* One of the handicaps to implement UFO models and to compare with Monte Carlo

HEFT: "cons"

* Not widely implemented in Montecarlo
* Difficult to measure/interpret longitudinal gauge bosons
in experiment

> Testing anomalous $H-W$ couplings and Higgs self-couplings via double and triple Higgs production at $e^{+} e^{-}$colliders
> M. Gonzalez-Lopez (Madrid, Autonoma U. and Madrid, IFT), M.J. Herrero (Madrid, Autonoma U. and Madrid, IFT), P. Martinez-Suarezz (Madrid, Autonoma U. and Madrid, IFT and Barcelona, IFAE) Nov 27, 2020

Comparing mesons and $W_{L} W_{L}$ TeV-resonances

A new look to the

SMEFT-HEFT duality

Recent works bighlighting the EFT geometry

* R. Alonso, E. E. Jenkins, and A. V. Manohar,
* "A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space," Phys. Lett. B754 (2016) 335-342, arXiv:1511.00724 [hep-ph].
* "Sigma Models with Negative Curvature," Phys.Lett.B756,358(2016),arXiv:1602.00706 [hep-ph].

we now know that HEFT and SMEFT can be understood geometrically

* "Geometry of the Scalar Sector," JHEP 08 (2016) 101, arXiv:1605.03602 [hep-ph]." (Cohen et al., 2021, p. 95)
* T. Cohen, N. Craig, X. Lu, and D. Sutherland:
* "Is SMEFT Enough?", JHEP 03, 237, arXiv:2008.08597 [hep-ph].
* "Unitarity Violation and the Geometry of Higgs EFTs", (2021), arXiv:2108.03240 [hep- ph].
* These works show us that SMEFT vs HEFT is more than linear vs nonlinear realisations...
* SMEFT exists if: $\exists h^{*} \rightarrow \mathscr{F}(h)=0$
* And $\mathscr{F}(h)$ is analytic in a certain region
* Consequences:
* $\exists F(h) \Longrightarrow \mathscr{F}(h)=F(h)^{2}$
* Double 0 of $\mathscr{F}(h)$
* Odd derivatives vanish (even derivatives of $F(h)$)

HEFT after 2010

* Take EwChL, enhanced by a flare function:

$$
\begin{aligned}
& \mathscr{L}_{H E F T}=\frac{1}{2} \partial_{\mu} h \partial_{\mu} h-V(h)+ \\
& \qquad \frac{1}{2} \mathscr{F}(h) \partial_{\mu} w^{i} \partial^{\mu} w^{j}\left(\delta_{i j}+\frac{w_{i} w_{j}}{v^{2}-w^{2}}\right)
\end{aligned}
$$

$$
\mathscr{F}(h)=1+\sum a_{n}\left(\frac{h}{v}\right)^{n}
$$

In HEFT, h and w's are independent

The flair of the Higgsflare: motivation

flair

noun
UK (A)) /fleər/ US (A)) /fler/

C1 [s]
natural ability to do something well:

- He has a flair for languages.

$$
\mathscr{F}(h)=\left(1+a_{1} \frac{h}{v}+a_{2} \frac{h^{2}}{v^{2}}+a_{3} \frac{h^{3}}{v^{3}}+\ldots+a_{n} \frac{h^{n}}{v^{n}}\right)
$$

Looking for Ibysies Beyond the SM

* Recast SMEFT in the HEFT language

$$
\mathscr{L}_{S M E F T}=\mathscr{L}_{S M}+\sum_{n, i} \frac{c_{i}^{(n)}}{\Lambda^{n-4}} \mathscr{O}_{i}^{(n)}
$$

$$
\mathscr{L}_{\text {SMEFT }}=A\left(|H|^{2}\right)|\partial H|^{2}+\frac{1}{2} B\left(|H|^{2}\right)\left(\partial|H|^{2}\right)^{2}-V\left(|H|^{2}\right)+\mathcal{O}\left(\partial^{4}\right)
$$

$$
|H|^{2}=(h+v)^{2}
$$

Here is where HEFT kicks in

Write SMEFT

$\mathrm{SM} \subset \mathrm{SMEFT} \subset \mathrm{HEFT}$. in HEFT form:

$$
|\partial H|^{2}+\frac{1}{2} B(|H|)^{2}\left(\partial\left(|H|^{2}\right)\right)^{2} \rightarrow \frac{v^{2}}{4} \mathscr{F}(h)\left\langle D_{\mu} U^{\dagger} D^{\mu} U\right\rangle+\frac{1}{2}\left(\partial h_{H E F T}\right)^{2}
$$

$$
d h_{H E F T}=\sqrt{1+\left(v+h_{\text {SMEFT }}\right)^{2} B\left(h_{\text {SMEFT }}\right)} d h_{\text {SMEFT }}
$$

The Flare Function

* In HEFT: $\mathscr{F}(h)_{H E F T}=1+a_{1} \frac{h}{v}+a_{2}\left(\frac{h}{v}\right)^{2}+a_{3}\left(\frac{h}{v}\right)^{3}+\ldots$
* In the SM: $\mathscr{F}(h)_{S M}=\left(1+\frac{h}{v}\right)^{2}$
* In SMEFT?

Falsifying SMEFT

* Relevant SMEFT operators for the Higgs sector (dim 6):

$$
\begin{array}{ll}
\mathcal{O}_{H}=\left(H^{\dagger} H\right)^{3}, & \mathcal{O}_{H D}=\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right), \\
\mathcal{O}_{H \square}=\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) .
\end{array}
$$

* At high energies they decouple and only one survives: $\mathcal{O}_{H \square}$

Tbe Flare function in SMEFT

$$
\begin{gathered}
\mathcal{L}_{\mathrm{SMEFT}}=\frac{v^{2}}{4}\left(1+\frac{h_{1}}{v}\right)^{2}\left\langle D_{\mu} U^{\dagger} D^{\mu} U\right\rangle+\frac{1}{2}\left(1-\frac{2 c_{H \square}\left(h_{1}+v\right)^{2}}{\Lambda^{2}}\right)\left(\partial_{\mu} h_{1}\right)^{2}-V\left(h_{1}\right) \\
\quad=\frac{v^{2}}{4} \mathcal{F}\left(h_{1}\right)\left\langle D_{\mu} U^{\dagger} D^{\mu} U\right\rangle+\frac{1}{2}\left(\partial_{\mu} h_{1}\right)^{2}-V(h)-\frac{c_{H \square}\left[\left(v+h_{1}\right)^{3}-v^{3}\right]}{3 \Lambda^{2}} V^{\prime}\left(h_{1}\right) .
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{F}\left(h_{1}\right)= & \left(1+\frac{h_{1}}{v}\right)^{2}+\frac{2 v^{3} c_{H \square}}{\Lambda^{2}}\left(1+\frac{h_{1}}{v}\right)\left(\frac{h_{1}^{3}}{3 v^{3}}+\frac{h_{1}^{2}}{v^{2}}+\frac{h_{1}}{v}\right)+\mathcal{O}\left(\frac{c_{H \square}^{2}}{\Lambda^{4}}\right)= \\
= & 1+\left(\frac{h_{1}}{v}\right)\left(2+2 \frac{c_{H \square} v^{2}}{\Lambda^{2}}\right)+\left(\frac{h_{1}}{v}\right)^{2}\left(1+4 \frac{c_{H \square} v^{2}}{\Lambda^{2}}\right)+ \\
& +\left(\frac{h_{1}}{v}\right)^{3}\left(8 \frac{c_{H \square v^{2}}^{3 \Lambda^{2}}}{3}\right)+\left(\frac{h_{1}}{v}\right)^{4}\left(2 \frac{c_{H \square v^{2}}^{3 \Lambda^{2}}}{3 \Lambda^{2}}\right)
\end{aligned}
$$

$$
a_{1}=2 a=2\left(1+v^{2} \frac{c_{H}}{\Lambda^{2}}\right), \quad a_{2}=b=1+4 v^{2} \frac{c_{H}}{\Lambda^{2}}, \quad a_{3}=\frac{8 v^{2}}{3} \frac{c H \square}{\Lambda 2}, \quad a_{4}=\frac{c^{2}}{3} \frac{c H \square}{\Lambda 2}
$$

The Flare function in SMEFT

$$
\begin{aligned}
\mathcal{F}\left(h_{1}\right)=1 & +\left(\frac{h_{1}}{v}\right)\left(2+2 \frac{c_{H \square}^{(6)} v^{2}}{\Lambda^{2}}+3 \frac{\left(c_{H \square}^{(6)}\right)^{2} v^{4}}{\Lambda^{4}}+2 \frac{c_{H \square}^{(8)} v^{4}}{\Lambda^{4}}\right)+ \\
& +\left(\frac{h_{1}}{v}\right)^{2}\left(1+4 \frac{c_{H \square}^{(6)} v^{2}}{\Lambda^{2}}+12 \frac{\left(c_{H \square)^{2} v^{4}}^{\Lambda^{4}}\right.}{}+6 \frac{c_{H \square}^{(8)} v^{4}}{\Lambda^{4}}\right)+ \\
& +\left(\frac{h_{1}}{v}\right)^{3}\left(8 \frac{c_{H \square}^{(6)} v^{2}}{3 \Lambda^{2}}+56 \frac{\left(c_{H \square)^{(6)} v^{4}}^{3 \Lambda^{4}}+8 \frac{c_{H \square}^{(8)} v^{4}}{\Lambda^{4}}\right)+}{}\right.
\end{aligned}
$$

Naturally

extend to dim8 and
further, and to quadratic terms

$$
+\left(\frac{h_{1}}{v}\right)^{4}\left(2 \frac{c_{H \square}^{(6)} v^{2}}{3 \Lambda^{2}}+44 \frac{\left(c_{H \square}^{(6)}\right)^{2} v^{4}}{3 \Lambda^{4}}+6 \frac{c_{H \square}^{(8)} v^{4}}{\Lambda^{4}}\right)+
$$

$$
+\left(\frac{h_{1}}{v}\right)^{5}\left(88 \frac{\left(c_{H \square}^{(6)}\right)^{2} v^{4}}{15 \Lambda^{4}}+12 \frac{c_{H \square}^{(8)} v^{4}}{5 \Lambda^{4}}\right)+
$$

$$
+\left(\frac{h_{1}}{v}\right)^{6}\left(44 \frac{\left(c_{H \square}^{(6)}\right)^{2} v^{4}}{45 \Lambda^{4}}+2 \frac{c_{H \square}^{(8)} v^{4}}{5 \Lambda^{4}}\right)+\mathcal{O}\left(\Lambda^{-6}\right)
$$

The SM is falsified by finding a nonzero Wilson Coefficient

How is the SMEFT falsified?

SMEFT vs HEFT

* A deviation from the SM, if small enough, can always be parametrised by the Warsaw basis

SMEFT vs HEFT

* A deviatioc 5 回 ninge, can always be pari. ${ }^{\text {rised }}$ by the Warsaw basis

The role of cHB Bx in SMEFT

$$
\mathcal{L}_{\mathrm{SMEFT}}=\frac{1}{2}\left(1-\frac{2 c_{H \square} v^{2}}{\Lambda^{2}}\right) \partial_{\mu} h \partial^{\mu} h+\ldots
$$

$$
\frac{\sigma_{H, \mathrm{SMEFT}}}{\sigma_{H, \mathrm{SM}}} \propto \frac{\Gamma_{H, \mathrm{SMEFT}}}{\Gamma_{H, \mathrm{SM}}} \propto 1+2 \frac{c_{H \square v^{2}}}{\Lambda^{2}}=1+0.12 c_{H \square}
$$

Current Bounds (SMEFiT and Fitmaker)

$$
\begin{aligned}
c_{H \square} & \simeq-0.3 \pm 0.7 \text { (individual) } \\
c_{H \square} & \simeq-1 \pm 2 \text { (marginalized) } .
\end{aligned}
$$

Multibiggs production

* At high energies ($\approx 1 \mathrm{TeV}$) we can rely on the equivalence theorem

$$
T_{\omega \omega \rightarrow n \times h}=\frac{s}{v^{n}} \sum_{i=1}^{p(n)}\left(\psi_{i}\left(q_{1}, q_{2},\left\{p_{k}\right\}\right) \prod_{j=1}^{\left|\operatorname{IP}[n]_{i}\right|} a_{\mathrm{IP}[n]_{i}^{j}}\right)
$$

Falsifying SMEFT

* Two approaches

1. Ratios of total cross sections of

$$
w_{L} w_{L} \rightarrow n h
$$

2. Correlations between flare coefficients

Tabulated amplitudes for ww -> nh available on request

Falsifying SMEFT: Ratios of XSECS

In HEFT:

$T_{\omega \omega \rightarrow n h}=f\left(a_{1}, \ldots, a_{n}\right)$

$$
T_{\omega \omega \rightarrow h}=-\frac{a_{1} s}{2 v}
$$

$$
T_{\omega \omega \rightarrow h h}=\frac{s}{v^{2}}\left(a^{2}-b\right)=\frac{s}{v^{2}}\left(\frac{a_{1}^{2}}{4}-a_{2}\right)
$$

$$
T_{\omega \omega \rightarrow n h} \propto\left(\frac{s}{v^{n-2} \Lambda^{2}}\right) c_{H \square} \quad \text { in SMEFT up to } \mathcal{O}\left(\Lambda^{-2}\right)
$$

$$
\frac{\sigma(\omega \omega \rightarrow n h)}{\sigma(\omega \omega \rightarrow m h)}=\text { independent of } c_{H \square}
$$

Falsifying SMEFT: correlations

Correlations accurate at order Λ^{-2}	Correlations accurate at order Λ^{-4}	Λ^{-4} Assuming SMEFT perturbativity
$\Delta a_{2}=2 \Delta a_{1}$		$\left\|\Delta a_{2}\right\| \leq 5\left\|\Delta a_{1}\right\|$
$a_{3}=\frac{4}{3} \Delta a_{1}$	$\left(a_{3}-\frac{4}{3} \Delta a_{1}\right)=\frac{8}{3}\left(\Delta a_{2}-2 \Delta a_{1}\right)-\frac{1}{3}\left(\Delta a_{1}\right)^{2}$	
$a_{4}=\frac{1}{3} \Delta a_{1}$	$\left(a_{4}-\frac{1}{3} \Delta a_{1}\right)=\frac{5}{3} \Delta a_{1}-2 \Delta a_{2}+\frac{7}{4} a_{3}=$	
	$\frac{8}{3}\left(\Delta a_{2}-2 \Delta a_{1}\right)-\frac{7}{12}\left(\Delta a_{1}\right)^{2}$	those for $a_{3}, a_{4}, a_{5}, a_{6}$
$a_{5}=0$	$a_{5}=\frac{8}{5} \Delta a_{1}-\frac{22}{15} \Delta a_{2}+a_{3}=$ $=\frac{6}{5}\left(\Delta a_{2}-2 \Delta a_{1}\right)-\frac{1}{3}\left(\Delta a_{1}\right)^{2}$ $a_{6}=\frac{1}{6} a_{5}$	all the same
$a_{6}=0$		

$$
a_{1}=\left(2+2 \frac{c_{H \square}^{(6)} v^{2}}{\Lambda^{2}}+3 \frac{\left.\left(c_{H \square)^{(6)} v^{4}}^{\Lambda^{4}}+2 \frac{c_{H \square}^{(8)} v^{4}}{\Lambda^{4}}\right) \quad a_{2}=\left(1+4 \frac{c_{H \square}^{(6)} v^{2}}{\Lambda^{2}}+12 \frac{\left(c_{H \square)^{(6)} v^{4}}^{\Lambda^{4}}\right.}{\Lambda^{4}}+6 \frac{c_{H \square}^{(8)} v^{4}}{\Lambda^{4}}\right)\right) ~(1)}{}\right)
$$

Falsifying SMEFT

Blue and red: Best available bounds

Experimental application

* Ideally future colliders will be able to measure multihiggs production at a good enough accuracy to test these correlations.
* Already a measurement of double H production at HL-LHC would provide greater insight on the al/a2 values.

Experimental application: state of the art

* Measurements by ATLAS and CMS have produced bounds on al and aiz:

$$
\begin{array}{r}
a_{1} / 2=a \in[0.97,1.09] \\
a_{2} \in[-0.43,2.56](\mathrm{AT}) \\
\quad \in[-0.1,2.2](\mathrm{CMS})
\end{array}
$$

Consistent SMEFT range at order Λ^{-2}	Consistent SMEFT range at order Λ^{-4}	Perturbativity of Λ^{-4} SMEFT
$\Delta a_{2} \in[-0.12,0.36]$	ATLAS	ATLAS
$a_{3} \in[-0.08,0.24]$	$a_{3} \in[-4.1,4.0]$	$a_{3} \in[-3.1,1.7]$
$a_{4} \in[-0.02,0.06]$	$a_{4} \in[-4.2,3.9]$	$a_{4} \in[-3.3,1.5]$
$a_{5}=0$	$a_{5} \in[-1.9,1.8]$	$a_{5} \in[-1.5,0.6]$
$a_{6}=0$	$a_{6}=a_{5}$	$a_{6}=a_{5}$
	CMS	CMS
	$a_{3} \in[-3.2,3.0]$	$a_{3} \in[-3.1,1.7]$
	$a_{4} \in[-3.3,3.0]$	$a_{4} \in[-3.3,1.5]$
	$a_{5} \in[-1.5,1.3]$	$a_{5} \in[-1.5,0.6]$
	$a_{6}=a_{5}$	$a_{6}=a_{5}$

Conelusions and outlook

* The Higgs potential is a big open question at LHC
* We have shown here a procedure to rule out the SMEFFT, independent of the finding of new particles
* A first clue might be accessible at HL-LHC (through double H production)
* We can use properties of the flare function to extract further insights on low energy physics (see paper)
* We can associate the flare function being HEFT-like or SMEFT-like with concrete BSM scenarios

Supported by spanish MICINN PID2019-1 Complutense de Madrid under research g FRC Starting Grant REINVENT-714788; U Cariplo and Regione Lombardia, grant 20

Backup - References

* Dim 6 EFT Basis:B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10, 085, arXiv:1008.4884 [hep-ph].
* Dim 8 basis:
* C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10, 174, arXiv:2005.00059 [hep-ph].
* H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104, 015026 (2021), arXiv: 2005.00008 [hep-ph].

Measurements of a1/a2

A combination of measurements of Hisgs boson production and decay using up to $139 \mathrm{fb}^{-1}$ of proton-proton collision data at
13 TeV collected with the ATLAS experiment, (2020).
A. Tumasyan et al. (CMS), Search for Higgs boson pair production in the four b quark final state in proton-proton collisions at
13 TeV , (202ఙ), arXiv:ん2ం2.09617 [hep-ex].
G. Aad et al. (ATLAS), Search for the HH \rightarrow bbbb process via vector-boson fusion production using proton-proton collisions at $\mathrm{s}=\sqrt{ } 13 \mathrm{TeV}$ with the ATLAS detector, JHEP 07, 108, [Erratum: JHEP 01, 145 (2021), Erratum: JHEP 05, 207 (2021)], arXiv:2001.05178

Backup - References

The LHC sits here

TeV parton-level collisions sit here

