SMEET VS HEET

MBI 2022 Shanghai

Raquel Gomez Ambrosio

Based largely on 2204.01763, with F. Llanes-Estrada, A. Salas-Bernardez, and JJ Sanz-Cillero

SMETT VS HETT

Similarities

And

Differences

Outline

- * The SMEFT: LHC's favourite
- * HEFT: the old classic
- * Geometrical interpretations
- * HEFT in terms of SMEFT

Looking for Physics Beyond the SM

* SMEFT: LHC's favourite

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{n,i} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}$$

- * Assume SM symmetries and fields
- * Assume new physics is weakly coupled (clear cut-off scale Lambda)
- * Assume traditional EWSB mechanism (H in a doublet)

SMETT in a nutshell

- * Pros and cons:
 - * A theory of deviations: Natural to parametrise small deviations from the SM (99% of the time!)
 - * Couplings get modified as:

*
$$V_{EFT} = V_{SM} \left(1 + \frac{g_6}{\Lambda^2} \right)$$

- * Similarly for propagators, wave functions, input parameters
- * Not all deviations (ie BSM models) are allowed

Comparing with LHC data

* Amplitude analogous to SM one:

$$\sigma_{EFT} = \sigma_{SM} + \sigma_{int,6} + \sigma_{pure,6} + \sigma_{int,8} + \dots$$

$$linear quadratic$$

- * Not uniquely defined (results are truncation-dependent)
- * Other than that, technically similar to SM-LHC computations

LHC Global fits

* In the absence of new particles, our main effort goes into constraining SMEFT coefficients

SM-to-SMEFT relatively easy to implement on the technical tools

fitmaker, smefit, et al.

SMETT mimics the SM structures

* In particular:

*
$$V_{HHH}^{SM} = vV_{HHHH}^{SM}$$
 and $V_{WWH}^{SM} = vV_{WWHH}^{SM}$

* (consequence of the EWSB mechanism)

This is the main feature that we can use to falsify smeft

SMEET(QUILO

* The SMEFT Lagrangian can be renormalised in the same way as the SM one

See f. ex. 1505.03706. Ghezzi, RGA, Passarino, Uccirati

HETT: an old classic

- * Originally the non-linear sigma model (for Pions)
- * In principle a QCD Lagrangian -> inspired the EWChL
- * Very natural for the study of the Higgs-Goldstone interactions
- * I.e: scattering of longitudinal gauge bosons -> Vector boson fusion/scattering
- * Natural for strongly coupled new physics

EWChl HEFT natural to study VBF/VBS

- * Madrid UCM and UAM
 - * Strongly coupled theories beyond the Standard Model. Antonio Dobado, Domènec Espriu. Prog.Part.Nucl.Phys. 115 (2020) 103813
 - * Unitarity, analyticity, dispersion relations, and resonances in strongly interacting WL WL, ZL ZL, , and hh scattering.

 R.Delgado, A Dobado, F Llanes-Estrada.

 Phys.Rev.D 91 (2015) 7, 075017
 - * Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis. R.L. Delgado, A. Dobado, D. Espriu, C. Garcia-Garcia, M.J. Herrero et al. JHEP 11 (2017) 098
 - * One-loop $\gamma\gamma \rightarrow$ WL WL and $\gamma\gamma \rightarrow$ ZL ZL from the Electroweak Chiral Lagrangian with a light Higgs-like scalar. R.L. Delgado, A. Dobado, M.J. Herrero, J.J. Sanz-Cillero. JHEP 07 (2014) 149

SMETT
$$\vec{\phi}_1$$

$$\vec{\phi} = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_4 + i\phi_3 \end{pmatrix}$$

h and
$$\vec{n} = \begin{pmatrix} n_1 = \pi_1/v \\ n_2 = \pi_2/v \\ n_3 = \pi_3/v \\ n_4 = \sqrt{1 - n_1^2 - n_2^2 - n_3^2} \end{pmatrix}$$

- * SMEFT scalar sector —> Linear sigma model
- * HEFT -> Non-linear sigma model

Strongly interacting Higgs bosons

Thomas Appelquist and Claude Bernard Phys. Rev. D **22**, 200 – Published 1 July 1980

HETT: an old classic

* First differences: Power counting

LO

$$\mathcal{L}_{\text{NLO HEFT}} = \frac{1}{2} \left[1 + 2a \frac{h}{v} + b \left(\frac{h}{v} \right)^{2} \right] \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{j} \left(\delta_{ij} + \frac{\omega^{i} \omega^{j}}{v^{2} - \boldsymbol{\omega}^{2}} \right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h \right]$$

$$+ \frac{4\alpha_{4}}{v^{4}} \partial_{\mu} \omega^{i} \partial_{\nu} \omega^{i} \partial^{\mu} \omega^{j} \partial^{\nu} \omega^{j} + \frac{4\alpha_{5}}{v^{4}} \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{j} \partial^{\nu} \omega^{j} + \frac{g}{v^{4}} (\partial_{\mu} h \partial^{\mu} h)^{2}$$

$$+ \frac{2d}{v^{4}} \partial_{\mu} h \partial^{\mu} h \partial_{\nu} \omega^{i} \partial^{\nu} \omega^{i} + \frac{2e}{v^{4}} \partial_{\mu} h \partial^{\nu} h \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{i} ,$$

NLO

HETT: caveats

* The correspondence between SM/ SMEFT goldstones and the HEFT goldstones is not one-to-one:

*
$$w^+w^- \rightarrow n \times h \neq \phi^+\phi^- \rightarrow n \times h$$

* One of the handicaps to implement UFO models and to compare with Monte Carlo

- * Not widely implemented in Montecarlo
- * Difficult to measure/interpret longitudinal gauge bosons in experiment

Testing anomalous H-W couplings and Higgs self-couplings via double and triple Higgs production at e^+e^- colliders

M. Gonzalez-Lopez (Madrid, Autonoma U. and Madrid, IFT), M.J. Herrero (Madrid, Autonoma U. and Madrid, IFT), <u>P. Martinez-Suarez</u> (Madrid, Autonoma U. and Madrid, IFT and Barcelona, IFAE)
Nov 27, 2020

Comparing mesons and $W_L W_L$ TeV-resonances

#1

Antonio Dobado (Madrid U. and ICC, Barcelona U.), Rafael L. Delgado (Madrid U. and ICC, Barcelona U.), Felipe J. Llanes-Estrada (Madrid U. and ICC, Barcelona U.), Domenec Espriu (Madrid U. and ICC, Barcelona U.) (Oct 13, 2015)

A new look to the

SMETT-HETT duality

Recent works highlighting the EFT geometry

- * R. Alonso, E. E. Jenkins, and A. V. Manohar,
 - * "A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space," Phys. Lett. B754 (2016) 335–342, arXiv:1511.00724 [hep-ph].
 - * "Sigma Models with Negative Curvature," Phys.Lett.B756,358(2016),arXiv:1602.00706 [hep-ph].
 - * "Geometry of the Scalar Sector," JHEP 08 (2016) 101, arXiv:1605.03602 [hep-ph]." (Cohen et al., 2021, p. 95)
- * T. Cohen, N. Craig, X. Lu, and D. Sutherland:
 - * "Is SMEFT Enough?", JHEP 03, 237, arXiv:2008.08597 [hep-ph].
 - * "Unitarity Violation and the Geometry of Higgs EFTs", (2021), arXiv:2108.03240 [hep-ph].

we now know that HEFT and SMEFT can be understood geometrically

- * These works show us that SMEFT vs HEFT is more than linear vs nonlinear realisations...
 - * SMEFT exists if: $\exists h^* \to \mathcal{F}(h) = 0$
 - * And $\mathcal{F}(h)$ is analytic in a certain region
- * Consequences:

*
$$\exists F(h) \implies \mathcal{F}(h) = F(h)^2$$

- * Double 0 of $\mathcal{F}(h)$
- * Odd derivatives vanish (even derivatives of F(h))

HET after 2010

* Take EwChL, enhanced by a flare function:

$$\mathcal{L}_{HEFT} = \frac{1}{2} \partial_{\mu} h \partial_{\mu} h - V(h) + \frac{1}{2} \mathcal{F}(h) \partial_{\mu} w^{i} \partial^{\mu} w^{j} \left(\delta_{ij} + \frac{w_{i} w_{j}}{v^{2} - \mathbf{w}^{2}} \right)$$

$$\mathcal{F}(h) = 1 + \sum_{n=1}^{\infty} a_n \left(\frac{h}{v}\right)^n$$

In HEFT, h and w's are independent

The flair of the Higgsflare: motivation

flair

noun

UK ◀》 /fleər/ US ◀》 /fler/

natural ability to do something well:

• He has a flair for languages.

$$\mathcal{F}(h) = \left(1 + a_1 \frac{h}{v} + a_2 \frac{h^2}{v^2} + a_3 \frac{h^3}{v^3} + \dots + a_n \frac{h^n}{v^n}\right)$$

Looking for Physics Beyond the SM

* Recast SMEFT in the HEFT language

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{n,i} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}$$

$$\mathcal{L}_{SMEFT} = A(|H|^2)|\partial H|^2 + \frac{1}{2}B(|H|^2)(\partial |H|^2)^2 - V(|H|^2) + \mathcal{O}(\partial^4)$$

$$|H|^2 = (h+v)^2$$

Here is where HETT kicks in

Write SMEFT in HEFT form:

$$|\partial H|^2 + \frac{1}{2}B(|H|)^2(\partial(|H|^2))^2 \rightarrow \frac{v^2}{4}\mathcal{F}(h)\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle + \frac{1}{2}(\partial h_{HEFT})^2$$

$$dh_{HEFT} = \sqrt{1 + (v + h_{SMEFT})^2 B(h_{SMEFT})} dh_{SMEFT}$$

The Flare Function

* In HEFT:
$$\mathcal{F}(h)_{HEFT} = 1 + a_1 \frac{h}{v} + a_2 \left(\frac{h}{v}\right)^2 + a_3 \left(\frac{h}{v}\right)^3 + \dots$$

* In the SM:
$$\mathcal{F}(h)_{SM} = \left(1 + \frac{h}{v}\right)^2$$

* In SMEFT?

Falsitying SMEFT

* Relevant SMEFT operators for the Higgs sector (dim 6):

$$\mathcal{O}_H = (H^{\dagger}H)^3$$
, $\mathcal{O}_{HD} = (H^{\dagger}D_{\mu}H)^*(H^{\dagger}D^{\mu}H)$, $\mathcal{O}_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$.

At high energies they decouple and only one survives: $\mathcal{O}_{H\square}$

The Flare function in SMETT

$$\mathcal{L}_{\text{SMEFT}} = \frac{v^2}{4} \left(1 + \frac{h_1}{v} \right)^2 \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle + \frac{1}{2} \left(1 - \frac{2c_{H\Box}(h_1 + v)^2}{\Lambda^2} \right) (\partial_{\mu} h_1)^2 - V(h_1)$$

$$= \frac{v^2}{4} \mathcal{F}(h_1) \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle + \frac{1}{2} (\partial_{\mu} h_1)^2 - V(h) - \frac{c_{H\Box} \left[(v + h_1)^3 - v^3 \right]}{3\Lambda^2} V'(h_1).$$

$$\mathcal{F}(h_{1}) = \left(1 + \frac{h_{1}}{v}\right)^{2} + \frac{2v^{3}c_{H\square}}{\Lambda^{2}} \left(1 + \frac{h_{1}}{v}\right) \left(\frac{h_{1}^{3}}{3v^{3}} + \frac{h_{1}^{2}}{v^{2}} + \frac{h_{1}}{v}\right) + \mathcal{O}\left(\frac{c_{H\square}^{2}}{\Lambda^{4}}\right) =$$

$$= 1 + \left(\frac{h_{1}}{v}\right) \left(2 + 2\frac{c_{H\square}v^{2}}{\Lambda^{2}}\right) + \left(\frac{h_{1}}{v}\right)^{2} \left(1 + 4\frac{c_{H\square}v^{2}}{\Lambda^{2}}\right) +$$

$$+ \left(\frac{h_{1}}{v}\right)^{3} \left(8\frac{c_{H\square}v^{2}}{3\Lambda^{2}}\right) + \left(\frac{h_{1}}{v}\right)^{4} \left(2\frac{c_{H\square}v^{2}}{3\Lambda^{2}}\right),$$

$$a_1 = 2a = 2\left(1 + v^2 \frac{c_{H\square}}{\Lambda^2}\right), \quad a_2 = b = 1 + 4v^2 \frac{c_{H\square}}{\Lambda^2}, \quad a_3 = \frac{8v^2}{3} \frac{c_{H\square}}{\Lambda^2}, \quad a_4 = \frac{2v^2}{3} \frac{c_{H\square}}{\Lambda^2}.$$

The Flare function in SMETT

$$\mathcal{F}(h_1) = 1 + \left(\frac{h_1}{v}\right) \left(2 + 2\frac{c_{H\square}^{(6)}v^2}{\Lambda^2} + 3\frac{(c_{H\square}^{(6)})^2v^4}{\Lambda^4} + 2\frac{c_{H\square}^{(8)}v^4}{\Lambda^4}\right) +$$

$$+ \left(\frac{h_1}{v}\right)^2 \left(1 + 4\frac{c_{H\square}^{(6)}v^2}{\Lambda^2} + 12\frac{(c_{H\square}^{(6)})^2v^4}{\Lambda^4} + 6\frac{c_{H\square}^{(8)}v^4}{\Lambda^4}\right) +$$

$$+ \left(\frac{h_1}{v}\right)^3 \left(8\frac{c_{H\square}^{(6)}v^2}{3\Lambda^2} + 56\frac{(c_{H\square}^{(6)})^2v^4}{3\Lambda^4} + 8\frac{c_{H\square}^{(8)}v^4}{\Lambda^4}\right) +$$

Naturally
extend to
dim8 and
further, and
to quadratic
terms

$$+ \left(\frac{h_1}{v}\right)^4 \left(2\frac{c_{H\square}^{(6)}v^2}{3\Lambda^2} + 44\frac{(c_{H\square}^{(6)})^2v^4}{3\Lambda^4} + 6\frac{c_{H\square}^{(8)}v^4}{\Lambda^4}\right) +$$

$$+ \left(\frac{h_1}{v}\right)^5 \left(88\frac{(c_{H\square}^{(6)})^2v^4}{15\Lambda^4} + 12\frac{c_{H\square}^{(8)}v^4}{5\Lambda^4}\right) +$$

$$+ \left(\frac{h_1}{v}\right)^6 \left(44\frac{(c_{H\square}^{(6)})^2v^4}{45\Lambda^4} + 2\frac{c_{H\square}^{(8)}v^4}{5\Lambda^4}\right) + \mathcal{O}(\Lambda^{-6}) .$$

The SM is falsified by finding a nonzero Wilson Coefficient

How is the SMETT falsified?

SMEFT WHEFT

* A deviation from the SM, if small enough, can always be parametrised by the Warsaw basis

SMEFT WHEFT

* A deviation from the SM, if small enough, can always be parametrised by the Warsaw basis

The role of cHBox in SMETT

$$\mathcal{L}_{\text{SMEFT}} = \frac{1}{2} \left(1 - \frac{2c_{H\Box}v^2}{\Lambda^2} \right) \partial_{\mu}h\partial^{\mu}h + \dots$$

$$\frac{\sigma_{H, \text{ SMEFT}}}{\sigma_{H, \text{ SM}}} \propto \frac{\Gamma_{H, \text{ SMEFT}}}{\Gamma_{H, \text{ SM}}} \propto 1 + 2\frac{c_{H}\square v^2}{\Lambda^2} = 1 + 0.12c_{H}\square ,$$

Current Bounds
(SMEFiT and Fitmaker)

$$c_{H\square} \simeq -0.3 \pm 0.7$$
 (individual)
 $c_{H\square} \simeq -1 \pm 2$ (marginalized).

Multibiggs production

* At high energies ($\approx 1 \text{TeV}$) we can rely on the equivalence theorem

$$T_{\omega\omega\to n\times h} = \frac{s}{v^n} \sum_{i=1}^{p(n)} \left(\psi_i(q_1, q_2, \{p_k\}) \prod_{j=1}^{|\text{IP}[n]_i|} a_{\text{IP}[n]_i^j} \right)$$

Falsifying SMEFT

- * Two approaches
 - 1. Ratios of total cross sections of $w_L w_L \rightarrow nh$
 - 2. Correlations between flare coefficients

Falsifying SMEFT: Ratios of XSECS

In HEFT:

$$T_{\omega\omega\to nh}=f(a_1,\ldots,a_n)$$

$$T_{\omega\omega\to h} = -\frac{a_1 s}{2v}$$

$$T_{\omega\omega\to hh} = \frac{s}{v^2}(a^2 - b) = \frac{s}{v^2}\left(\frac{a_1^2}{4} - a_2\right)$$

$$T_{\omega\omega\to nh} \propto \left(\frac{s}{v^{n-2}\Lambda^2}\right) c_{H\square}$$
 in SMEFT up to $\mathcal{O}\left(\Lambda^{-2}\right)$

$$\frac{\sigma(\omega\omega\to nh)}{\sigma(\omega\omega\to mh)} = \text{independent of } c_{H\square}$$

Falsifying SMETT: correlations

Correlations	Correlations	Λ^{-4} Assuming
accurate at order Λ^{-2}	accurate at order Λ^{-4}	SMEFT perturbativity
$\Delta a_2 = 2\Delta a_1$		$ \Delta a_2 \le 5 \Delta a_1 $
$a_3 = \frac{4}{3}\Delta a_1$	$ (a_3 - \frac{4}{3}\Delta a_1) = \frac{8}{3}(\Delta a_2 - 2\Delta a_1) - \frac{1}{3}(\Delta a_1)^2 $	
$a_4 = \frac{1}{3}\Delta a_1$	$\left(a_4 - \frac{1}{3}\Delta a_1\right) = \frac{5}{3}\Delta a_1 - 2\Delta a_2 + \frac{7}{4}a_3 =$	those for a_3 , a_4 , a_5 , a_6
	$= \frac{8}{3}(\Delta a_2 - 2\Delta a_1) - \frac{7}{12}(\Delta a_1)^2$	
$a_5 = 0$	$a_5 = \frac{8}{5}\Delta a_1 - \frac{22}{15}\Delta a_2 + a_3 =$	all the same
	$= \frac{6}{5}(\Delta a_2 - 2\Delta a_1) - \frac{1}{3}(\Delta a_1)^2$	
$a_6 = 0$	$a_6 = \frac{1}{6}a_5$	

$$a_1 = \left(2 + 2\frac{c_{H\square}^{(6)}v^2}{\Lambda^2} + 3\frac{(c_{H\square}^{(6)})^2v^4}{\Lambda^4} + 2\frac{c_{H\square}^{(8)}v^4}{\Lambda^4}\right) \qquad a_2 = \left(1 + 4\frac{c_{H\square}^{(6)}v^2}{\Lambda^2} + 12\frac{(c_{H\square}^{(6)})^2v^4}{\Lambda^4} + 6\frac{c_{H\square}^{(8)}v^4}{\Lambda^4}\right).$$

Falsifying SMEFT

Blue and red:
Best available
bounds

Experimental application

- * Ideally future colliders will be able to measure multihiggs production at a good enough accuracy to test these correlations.
- * Already a measurement of double H production at HL-LHC would provide greater insight on the al/a2 values.

Experimental application: state of the art

* Measurements
by ATLAS and
CMS have
produced bounds
on al and a2:

 $a_1/2 = a \in [0.97, 1.09]$ $a_2 \in [-0.43, 2.56](AT)$ $\in [-0.1, 2.2](CMS)$

Consistent SMEFT	Consistent SMEFT	Perturbativity of
range at order Λ^{-2}	range at order Λ^{-4}	Λ^{-4} SMEFT
$\Delta a_2 \in [-0.12, 0.36]$	ATLAS	ATLAS
$a_3 \in [-0.08, 0.24]$	$a_3 \in [-4.1, 4.0]$	$a_3 \in [-3.1, 1.7]$
$a_4 \in [-0.02, 0.06]$	$a_4 \in [-4.2, 3.9]$	$a_4 \in [-3.3, 1.5]$
$a_5 = 0$	$a_5 \in [-1.9, 1.8]$	$a_5 \in [-1.5, 0.6]$
$a_6 = 0$	$a_6 = a_5$	$a_6 = a_5$
	CMS	CMS
	$a_3 \in [-3.2, 3.0]$	$a_3 \in [-3.1, 1.7]$
	$a_4 \in [-3.3, 3.0]$	$a_4 \in [-3.3, 1.5]$
	$a_5 \in [-1.5, 1.3]$	$a_5 \in [-1.5, 0.6]$
	$a_6 = a_5$	$a_6 = a_5$

conclusions and outlook

- * The Higgs potential is a big open question at LHC
- * We have shown here a procedure to rule out the SMEFT, independent of the finding of new particles
- * A first clue might be accessible at HL-LHC (through double H production)
- * We can use properties of the flare function to extract further insights on low energy physics (see paper)
- * We can associate the flare function being HEFT-like or SMEFT-like with concrete BSM scenarios

Supported by spanish MICINN PID2019-1 Complutense de Madrid under research g ERC Starting Grant REINVENT-714788; U

Cariplo and Regione Lombardia, grant 20

Backup - References

* Dim 6 EFT Basis:B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10, 085, arXiv:1008.4884 [hep-ph].

* Dim 8 basis:

- * C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10, 174, arXiv:2005.00059 [hep-ph].
- * H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104, 015026 (2021), arXiv: 2005.00008 [hep-ph].

Measurements of a1/a2

A combination of measurements of Higgs boson production and decay using up to 139 fb⁻¹ of proton–proton collision data at 13 TeV collected with the ATLAS experiment, (2020).

A. Tumasyan et al. (CMS), Search for Higgs boson pair production in the four b quark final state in proton-proton collisions at 13 TeV, (2022), arXiv:2202.09617 [hep-ex].

G. Aad et al. (ATLAS), Search for the HH \rightarrow bbbb process via vector-boson fusion production using proton-proton collisions at $s = \sqrt{13}$ TeV with the ATLAS detector, JHEP **07**, 108, [Erratum: JHEP 01, 145 (2021), Erratum: JHEP 05, 207 (2021)], arXiv:2001.05178

Backup - References

