EFT (global) analysis of dibosons

Jiayin Gu (顾嘉荫)

Fudan University

Multi-Boson Interactions 2022 August 23, 2022

Jiayin Gu (顾嘉荫)

The big picture

 \blacktriangleright Build large colliders \rightarrow go to high energy \rightarrow discover new particles!

Higgs and nothing else?

- What's next?
 - Build an even larger collider ($\sim 100 \,\text{TeV}$)?
 - No guaranteed discovery!

▶ Build large colliders → go to high energy → discover new particles!

do precision measurements \rightarrow discover new physics indirectly!

Higgs and nothing else?

What's next?

- ▶ Build an even larger collider (~ 100 TeV)?
- No guaranteed discovery!
- Higgs factory! (HL-LHC or a future lepton collider.)
- SMEFT (model independent approach)

• Build large colliders \rightarrow go to high energy \rightarrow discover new particles!

do precision measurements \rightarrow discover new physics indirectly!

Higgs and nothing else?

What's next?

- ▶ Build an even larger collider (~ 100 TeV)?
- No guaranteed discovery!
- Higgs factory! (HL-LHC or a future lepton collider.)
- SMEFT (model independent approach)

Diboson is an important part of the precision measurement program!

Diboson

- Disclaimer: I will focus on non-resonant, SM(-like) diboson processes.
- Why do we study it?
 - Why not? (e.g. free by-product of a Higgs factory)
 - An important part of the global SMEFT analysis.
 - Connected to the Higgs couplings (in the SMEFT framework).
- Diboson is an old subject! (LEP II era)
 - ▶ Probing the Weak Boson Sector in $e^+e^- \rightarrow W^+W^-$, Hagiwara, Peccei, Zeppenfeld, Hikasa (Nucl.Phys.B 282 (1987) 253-307)
 - Triple gauge boson couplings, G. Gounaris et al., 1996
 - Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, S. Schael et al., [1302.3415] (LEP summary paper, 2013)
- LHC: $pp \rightarrow WW/WZ$
 - many studies...

The Standard Model Effective Field Theory

- $[\mathcal{L}_{sm}] \leq 4$. Why?
 - Bad things happen when we have non-renormalizable operators!
 - Everything is fine as long as we are happy with finite precision in perturbative calculation.
- ► **d=5:** $\frac{c}{\Lambda}LLHH \sim \frac{cv^2}{\Lambda}\nu\nu$, Majorana neutrino mass.
- Assuming Baryon and Lepton numbers are conserved,

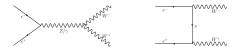
$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\boldsymbol{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{\boldsymbol{c}_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

If Λ ≫ v, E, then SM + dimension-6 operators are sufficient to parameterize the physics around the electroweak scale.

	X^{2}		φ^4 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		(LL)(LL)		(RR)(RR)		(LL)(RR)	
	Qc	$f^{ABC}G^{A\nu}_{\nu}G^{B\nu}_{\nu}G^{C\mu}_{\nu}$	9,	$(\varphi^{\dagger}\varphi)^{3}$	Que	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$	Q_{2}	$(\bar{l}_t \gamma_t \bar{l}_t)(\bar{l}_t \gamma^{\mu} l_t)$	Q_{ee}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{e}_{\nu}\gamma^{*}e_{\ell})$	Q_{1c}	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\nu})(\tilde{e}_{\mu}\gamma^{\mu}e_{\mu})$
and the second	Q0	1 ABC GA+ GA+ GC+	8.0	$(\varphi^{\dagger}\varphi) \Box (\varphi^{\dagger}\varphi)$	Q.,,	$(\varphi^{\dagger}\varphi)(\bar{q}_{\mu}u_{\mu}\bar{\varphi})$	$Q_{qq}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{q}_{\nu}\gamma^{\mu}q_{\nu})$	Q_{in}	$(6_{\mu}\gamma_{\mu}v_{\nu})(0_{e}\gamma^{\mu}s_{i})$	Q_{he}	$(\tilde{l}_p \gamma_p l_r)(\bar{u}_s \gamma^\mu u_t)$
	Qw	8 ^{LJK} W ^L W ^L W ^K F	Qell	$(\varphi^{\dagger}D^{*}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	Que	$(\varphi^{\dagger}\varphi)(q_{p}d_{r}\varphi)$	$Q_{12}^{(3)}$	$(\bar{q}_{\mu}\gamma_{\mu}\tau^{I}q_{\nu})(\bar{q}_{\mu}\gamma^{\mu}\tau^{I}q_{\ell})$	Q_{M}	$(\tilde{d}_{\mu}\gamma_{\mu}d_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$	Q_{1d}	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\tau})(\tilde{d}_{a}\gamma^{\mu}d_{l})$
		$\varepsilon^{IJK}\widetilde{W}^{I*}W^{J\mu}W^{K\mu}$					$Q_{lq}^{(1)}$	$(\bar{l}_{p}\gamma_{p}\bar{l}_{r})(\bar{a}_{r}\gamma^{\mu}a_{r})$	Q_{ca}	$(\tilde{\epsilon}_{\mu}\gamma_{\mu}e_{\nu})(\tilde{a}_{\mu}\gamma^{\mu}u_{\ell})$	$Q_{\rm P}$	$(\bar{q}_i\gamma_iq_i)(\bar{e}_i\gamma^\mu e_i)$
		X202		$\psi^2 X \varphi$		0202D	$Q_{iq}^{(2)}$	$(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i})$	Q_{et}	$(\bar{e}_y \gamma_p e_\tau)(\bar{d}_z \gamma^s d_b)$	$Q_{qu}^{(1)}$	$(\bar{q}_{t}\gamma_{t}q_{r})(\bar{s}_{s}\gamma^{\mu}u_{t})$
Z= -=== F. F~	Q _e g	0 0 G^A.G^{Aw	Qar	$(\overline{l}_0 \sigma^{\mu\nu} e_r) \tau^J \varphi W^I_{\mu\nu}$	$Q_{a}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{l}_{\nu} \gamma^{\mu} l_{\nu})$			$Q_{ad}^{(1)}$	$(\hat{u}_{\mu}\gamma_{\mu}u_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$		$(\bar{q}_{\rm F}\gamma_{\mu}T^Aq_{\rm F})(\bar{u}_e\gamma^{\mu}T^Au_l)$
$+ i \not\equiv \partial \not= + i_c$									$Q_{ud}^{(0)}$	$(\bar{u}_{\mu}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{t}\gamma^{\mu}T^{A}d_{t})$		$(\bar{q}_i\gamma_i q_r)(\bar{d}_s\gamma^* d_l)$
	$Q_{\mu\bar{\Omega}}$	$\varphi^{i} \varphi \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{q \pi} e_r) \varphi B_{\mu \nu}$		$(\varphi^{I}iD^{I}_{\mu}\varphi)(\bar{l}_{\rho}\tau^{I}\gamma^{\rho}l_{\sigma})$					$Q_{g\ell}^{(0)}$	$(\bar{q}_t \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
+ X: Yy X3pthc	Q_{qW}	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}_{\mu\nu}$	Q_{uG}	$(q_{\rm p}\sigma^{\mu\nu}T^A u_\tau) \bar{\varphi} G^A_{\mu\nu}$	Q_{qq}	$(\varphi^{\dagger}(\vec{D}_{\mu}\varphi)(\vec{e}_{\mu}\gamma^{\mu}e_{\nu})$	(LR)	(RL) and $(LR)(LR)$		B-vio	gnitel	
+ 2,9 ² - V(0)	$Q_{\sqrt{N}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I}e^{\nu}$	Q_{dW}	$(\bar{q}_{j}\sigma^{\mu\nu}u_{r})\tau^{I}\widetilde{\varphi}W^{I}_{\mu\nu}$	$Q_{qq}^{(1)}$	$(\varphi^{\dagger}i \overset{\circ}{D}_{\mu} \varphi)(\tilde{q}_{\rho} \gamma^{\mu} q_{r})$	Qieta	$(\tilde{l}_{e_r})(\tilde{d}_{eq})$	Que	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}[(d_{\pi}^{\alpha})$	TCu!	$[\langle q_i^{cj} \rangle^T C l_i^k]$
	Q_{rS}	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{vS}	$(\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\overline{\varphi} B_{\mu\nu}$	$Q_{\mu q}^{(3)}$		$Q_{med}^{(1)}$	$(\bar{q}_{s}^{i}u_{r})e_{jk}(\bar{q}_{s}^{k}\mathbf{d}_{l})$	900	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_k^{\alpha j})\right]$	TCg ^{il}	$[(\mathbf{a}_i^*)^T C \mathbf{e}_i]$
	$Q_{\mu\bar{k}}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{\mathbf{q}}_{\boldsymbol{\mu}}\sigma^{\boldsymbol{\mu}\mathbf{r}}T^{A}\mathbf{d}_{\boldsymbol{r}})\varphiG^{A}_{\boldsymbol{\mu}\boldsymbol{\sigma}}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{u}_{\rho} \gamma^{\mu} u_{r})$	Q ¹⁰	$\langle q_t^{c}T^{cl}v_r \rangle e_{jk} \langle q_s^{b}T^{cl}d_l \rangle$	$Q_{\rm eff}^{(1)}$	$\epsilon^{\alpha\beta\gamma}\epsilon_{jk}\epsilon_{mn} [(q_p^{\alpha}$	i)TOY	$[(q_i^{ee})^T C Q]$
	QUNB	$\varphi^{\dagger}\tau^{\dagger}\varphi W^{\dagger}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	Q_{qd}	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overrightarrow{d}_{p} \gamma^{\mu} d_{r})$	Q.00	$\langle E_{c_1} \rangle c_{ii} (\hat{q}_i^{i} a_1)$	98	Engr (r'E) # (r'E) en	[(q2 ³) ³	$Cq_{1}^{(k)}[(q_{1}^{(m)})^{T}CQ]$
	$Q_{\sqrt{N}B}$	$\varphi^{l}\tau^{l}\varphi\widetilde{W}^{l}_{\mu\nu}B^{\mu\nu}$	Q_{d3}	$(\bar{q}_{p}\sigma^{\mu\sigma}d_{r})\varphiB_{\mu\nu}$	Q_{pul}	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\hat{u}_{\mu}\gamma^{\mu}d_{\tau})$	$Q_{logu}^{(2)}$	$(\bar{l}^{i}_{p}\sigma_{\mu\nu}e_{\nu})e_{\mu}(\bar{q}^{i}_{\mu}\sigma^{\mu\nu}u_{i})$	Qen	$e^{\alpha \beta \gamma} [(d^{\alpha}_{\mu})^{3}$	Cu_r^{β}	$(u_i^*)^T C c_i$

- Write down all D6 operators, eliminate redundant ones via field redefinition, integration by parts, equations of motion...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.
- A global global fit with all measurements to all operator coefficients? (Not there yet!)
 - \blacktriangleright Here we focus on Higgs and electroweak measurements with $\sim 20\text{-}30$ parameters.

(EFT) Parameterizaiton



- ▶ $e^+e^- \rightarrow WW$ (lepton colliders) or $pp \rightarrow WW/WZ$ (hadron colliders)
- Focusing on tree-level CP-even dimension-6 contributions:
 - $e^+e^-
 ightarrow WW$ can be parameterized by

 $\delta g_{1,Z}, \ \delta \kappa_{\gamma}, \ \lambda_{Z}, \ \delta g_{Z,L}^{ee}, \ \delta g_{Z,R}^{ee}, \ \delta g_{W}^{e\nu}, \ \delta m_{W}$

- *m_W* is usually much better constrained.
- W branching ratios can be modified by additional operators (but only affect the total rates).
- Ignore δVff type couplings ⇒ 3 aTGCs! Not necessarily a good approximation! (See [1610.01618] Zhengkang Zhang)
- See other talks for neutral diboson analysis.
 - Leading BSM effects are from dimension-8 operators if we ignore the dim-6 corrections to Zff couplings.

Fudan University

You can't really separate Higgs from the EW gauge bosons!

 $\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = iH^{\dagger}\overrightarrow{D_{\mu}}H\overline{\ell}_{L}\gamma^{\mu}\ell_{L},\\ \mathcal{O}_{H\ell}' = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L},\\ \mathcal{O}_{He} = iH^{\dagger}\overrightarrow{D_{\mu}}H\overline{e}_{R}\gamma^{\mu}e_{R} \end{array}$

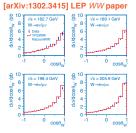
(or the ones with quarks)

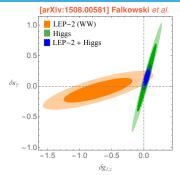
- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

- $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}, \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
 - generate **aTGCs** $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
 - also generates *HVV* anomalous couplings such as hZ_μ∂_νZ^{μν}.

Impacts on EFT fits, LHC + LEP

- Higgs better measured ⇒ Higgs helps diboson;
- ▶ diboson better measured ⇒ diboson helps Higgs. (usually the case)





- Note: LEP bounds should have been better!
 - The LEP summary paper did not provide global global-fit results for the 3 aTGCs.
 - The distributions of W decay angles were not provided.

You also have to measure the Higgs!

- Some operators can only be probed with the Higgs particle.
- $|H|^2 W_{\mu\nu} W^{\mu\nu} \text{ and } |H|^2 B_{\mu\nu} B^{\mu\nu}$
 - $H \rightarrow v/\sqrt{2}$, corrections to gauge couplings?
 - Can be absorbed by field redefinition! This applies to any operators in the form |*H*|²*O*_{SM}.

$$c_{\rm SM} \mathcal{O}_{\rm SM}$$
 vs. $c_{\rm SM} \mathcal{O}_{\rm SM} + \frac{c}{\Lambda^2} |H|^2 \mathcal{O}_{\rm SM}$
= $(c_{\rm SM} + \frac{c}{2} \frac{v^2}{\Lambda^2}) \mathcal{O}_{\rm SM}$ + terms with h
= $c'_{\rm SM} \mathcal{O}_{\rm SM}$ + terms with h

- probed by measurements of the hγγ and hZγ couplings, or the hWW and hZZ anomalous couplings.
- or Higgs in the loop (different story...)
- Yukawa couplings, Higgs self couplings, ...

Jiayin Gu (顾嘉荫)

Important properties of the diboson processes

Energy enhancement

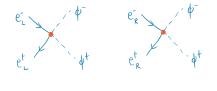
- leading dim-6 effects at high energy $\sim \frac{E^2}{\Lambda^2}$
- energy vs. precision

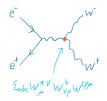
Angular distribution

- The diboson angular distributions are sensitive to the dim-6 effects.
- Just measuring the rates is not enough!
- How can we efficiently extract information from the distributions?

Energy enhancement

Goldstone equivalence: At very high energy, the longitudinal modes should be viewed as the goldstones!





[arXiv:1712.01310] Franceschini et al. (sign denotes helicity)

	SM	BSM
$q_{L,R}\bar{q}_{L,R} \to V_L V_L(h)$	~ 1	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_L(h)$	$\sim m_W/E$	$\sim m_W E/M^2$
$q_{L,R}\bar{q}_{L,R} \rightarrow V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \rightarrow V_{\pm}V_{\mp}$	~ 1	~ 1

• Leading BSM amplitude
$$\sim \frac{E^2}{M^2}$$
.

Precision

- \blacktriangleright Lepton colliders at $\sim 240\,{\rm GeV},$ large statistics, clean environment.
- ► High precision ⇒ E ≪ Λ Ideal for EFT studies!

Energy

- High energy tails are very sensitive to new physics effects,
- but are usually poorly measured.
- This lead to problems in the interpretation of EFT...

Precision and Energy

 High energy lepton collider (muon collider) See e.g. [2012.11555] Buttazzo et al.

Energy vs. Precision

- Precision
 - \blacktriangleright Lepton colliders at $\sim 240\,{\rm GeV},$ large statistics, clean environment.
 - ► High precision ⇒ E ≪ Λ Ideal for EFT studies!

Energy

- High energy tails are very sensitive to new physics effects,
- but are usually poorly measured.
- This lead to problems in the interpretation of EFT...

Precision and Energy

 High energy lepton collider (muon collider) See e.g. [2012.11555] Buttazzo et al.

We should include the dim-6 squared terms if they are large

Fudan University

$e^+e^- ightarrow WW$ with Optimal Observables

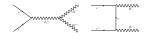
- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
- What are optimal observables?

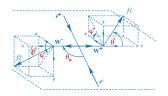
(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

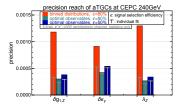
In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$rac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} \, g_i , \qquad c_{ij}^{-1} = \int d\Omega rac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

The optimal observables are given by O_i = S_{1,i}/S₀, and are functions of the 5 angles.







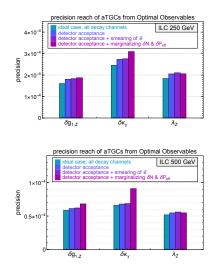
[arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul

Fudan University

EFT (global) analysis of dibosons

Updates on the WW analysis with Optimal Observables

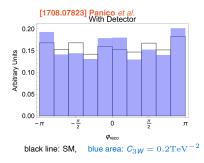
- How well can we do it in practice?
 - detector acceptance, measurement uncertainties, ...
- What we have done (in the snowmass study)
 - detector acceptance
 (|cos θ| < 0.9 for jets, < 0.95 for leptons)
 - some smearing (production polar angle only, $\Delta = 0.1$)
 - ILC: marginalizing over total rate (δN) and effective beam polarization (δP_{eff})
- Constructing full EFT likelihood and feed it to the global fit. (For illustration, only showing the 3-aTGC fit results here.)
- Further verifications (by experimentalists) are needed.



- The interference between SM and dim-6 amplitudes are suppressed if they have different helicities.
- ► The interference is **resurrected** by considering the diboson decays! $\mathcal{A}(ffVV) \rightarrow \mathcal{A}(6f)$
- These dim-6 effects show up in the azimuthal angles of the W/Z decay.
- (See also R.-Q. Xiao's talk tomorrow on applications in netrual diboson.)

[arXiv:1712.01310] Franceschini et al.

	SM	BSM
$q_{L,R}\bar{q}_{L,R} \to V_L V_L(h)$	~ 1	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_L(h)$	$\sim m_W/E$	$\sim m_W E/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\mp}$	~ 1	~ 1

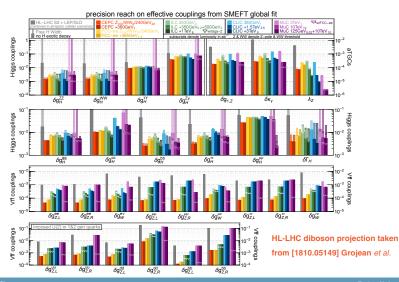


Higgs + EW SMEFT Global fit

- Global fit
 - Z-pole, diboson and Higgs processes are all connected in the SMEFT framework.
 - Usually ~ 20-30 parameters (instead of 2499) if we focus on CP-even effects in Higgs and electroweak measurements.
 - Of course we can add more (e.g. top operators)! (but not in this talk...)
- Limits on all the $\frac{c_i^{(6)}}{\Lambda^2}$
 - Results depend on operator bases, conventions, ...
- Present the results in terms of effective couplings ([arXiv:1708.08912], [arXiv:1708.09079], Peskin et al.)
 - ▶ g(hZZ), g(hWW) couplings have multiple contributions: $hZ^{\mu}Z_{\mu}$, $hZ^{\mu\nu}Z_{\mu\nu}$... defined as: $g(hZZ) \propto \sqrt{\Gamma(h \to ZZ)}$, $g(hWW) \propto \sqrt{\Gamma(h \to WW)}$.
- Present the results with some fancy bar plots!

Results from the recent snowmass study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou



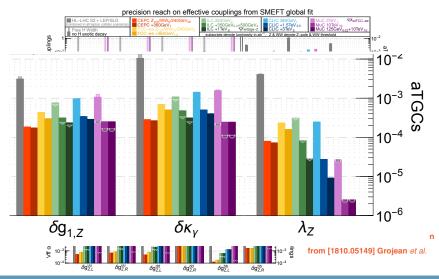
Jiayin Gu (顾嘉荫)

Fudan University

17

Results from the recent snowmass study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou



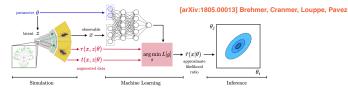
Jiayin Gu (顾嘉荫)

EFT (global) analysis of dibosons

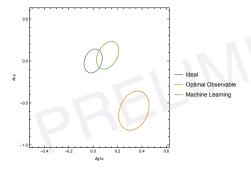
Fudan University

Machine Learning

- How well can we measure diboson in practice?
 - detector acceptance, measurement uncertainties, ISR ...
- Analytical methods becomes more difficult and time consuming when we include more realistic effects.

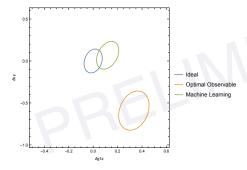


- Machine Learning is a promising solution for the extraction of information (theory parameters) from complicated collider data.
 - Already implemented in $pp \rightarrow ZW$. [2007.10356] Chen, Glioti, Panico, Wulzer
 - Current work with Shengdu Chai, Lingfeng Li on $e^+e^- \rightarrow WW$ with machine learning.



 Scale (size of the ellipses) is arbitrary.

- Semileptonic channel, jet smearing + ISR
 - Naively applying truth-level optimal observables could lead to a large bias!
 - Machine learning can give better results (current bias mainly due to limited sample size)!



 Scale (size of the ellipses) is arbitrary.

- Semileptonic channel, jet smearing + ISR
 - Naively applying truth-level optimal observables could lead to a large bias!
 - Machine learning can give better results (current bias mainly due to limited sample size)!
- When will Machine take over?

Diboson is an important measurement!

Energy and precision are both important for the diboson measurement!

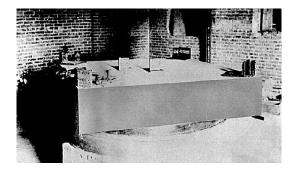
Machine learning is (likely to be) the future!

Future directions

- CP-odd operators?
- Loop contributions of dim-6 operators?
- Beyond dim-6?

Jiayin Gu (顾嘉荫)

A lesson from history



"Our future discoveries must be looked for in the sixth place of decimals."

- Albert A. Michelson

backup slides

Jiayin Gu (顾嘉荫

Fudan University

22

$$\mathcal{L}_{tgc} = igs_{\theta_{W}} A^{\mu} (W^{-\nu} W^{+}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu}) + ig(1 + \delta g_{1}^{Z}) c_{\theta_{W}} Z^{\mu} (W^{-\nu} W^{+}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu}) + ig \left[(1 + \delta \kappa_{Z}) c_{\theta_{W}} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta_{W}} A^{\mu\nu} \right] W^{-}_{\mu} W^{+}_{\nu} + \frac{ig}{m_{W}^{2}} (\lambda_{Z} c_{\theta_{W}} Z^{\mu\nu} + \lambda_{\gamma} s_{\theta_{W}} A^{\mu\nu}) W^{-\rho}_{\nu} W^{+}_{\rho\mu},$$
(1)

- Imposing Gauge invariance one obtains $\delta \kappa_Z = \delta g_{1,Z} t_{\theta_W}^2 \delta \kappa_{\gamma}$ and $\lambda_Z = \lambda_{\gamma}$.
- "Higgs effective coupling basis" (+ deviations in W BR. δ_{m_W} is constrained very well by *W* mass measurements.)

$$\delta g_{1,Z}, \ \delta \kappa_{\gamma}, \ \lambda_{Z}, \ \delta g^{ee}_{Z,L}, \ \delta g^{ee}_{Z,R}, \ \delta g^{e\nu}_{W}, \ \delta_{m_{W}}$$

D6 operators

$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} \mathcal{H}^{2})^{2}$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW} = g_2^2 H ^2 W_{\mu\nu}^a W^{a,\mu\nu}$	1 = 1 = 1
$O_{WW} = g^{-} \Pi ^{-} W_{\mu\nu}^{-} W^{-,\mu\nu}$	$\mathcal{O}_{y_u} = y_u \mathcal{H} ^2 q_L \mathcal{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB} = g^{\prime 2} H ^2 B_{\mu u} B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{l}_L H e_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = rac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu ho} W^{c ho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}}_{L} H \overline{\ell}_{L} \gamma^{\mu} \ell_{L}$
$\mathcal{O}_T = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H)^2$	$\mathcal{O}_{H\ell}' = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma^\mu_L \ell_L) (\bar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H e_R \gamma^{\mu} e_R$
$\mathcal{O}_{Hq} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}' = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{q}_{L}\sigma^{a}\gamma^{\mu}q_{L}$	$\mathcal{O}_{Hd} = iH^{\dagger}\overleftrightarrow{D_{\mu}}H\overline{d}_{R}\gamma^{\mu}d_{R}$

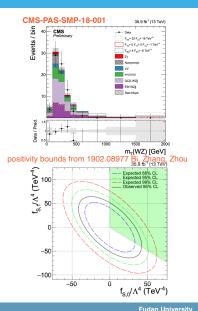
- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Probing dimension-8 operators?

- The dimension-8 contribution has a large energy enhancement (~ E⁴/Λ⁴)!
- It is difficult for LHC to probe these bounds.
 - Low statistics in the high energy bins.
 - Example: Vector boson scattering.
 - Λ ≤ √s, the EFT expansion breaks down!
- Can we separate the dim-8 and dim-6 effects?
 - Precision measurements at several different √s?

(A very high energy lepton collider?)

Or find some special process where dim-8 gives the leading new physics contribution?



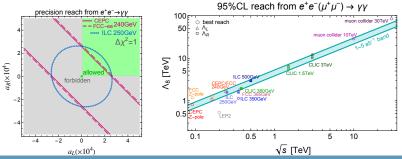
Jiayin Gu (顾嘉荫)

The diphoton channel [arXiv:2011.03055] JG, Lian-Tao Wang, Cen Zhang

- $e^+e^- \rightarrow \gamma\gamma$ (or $\mu^+\mu^- \rightarrow \gamma\gamma$), SM, non-resonant.
- ► Leading order contribution: dimension-8 contact interaction. $(f^+f^- \rightarrow \bar{e}_L e_L \text{ or } e_R \bar{e}_R)$

$$\mathcal{A}(f^+f^-\gamma^+\gamma^-)_{\rm SM+d8} = 2e^2 \frac{\langle 24\rangle^2}{\langle 13\rangle\langle 23\rangle} + \frac{a}{v^4} [13][23]\langle 24\rangle^2 \,.$$

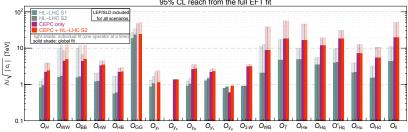
Can probe dim-8 operators (and their positivity bounds) at a Higgs factory (~ 240 GeV)!



Jiayin Gu (顾嘉荫)

Fudan University

Reach on the scale of new physics



95% CL reach from the full EFT fit

- Reach on the scale of new physics Λ .
- Note: reach depends on the couplings c_i!