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SM at the LHC (all good, too good)
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Differential distributions: let’s look at the tails
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With higher luminosity (and higher energy), at the LHC the accuracy of all 
measurements will in general increase, especially in the tail of distributions.
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Small deviations 
from BSM dynamics




Differential distributions: let’s look at the tails

With higher luminosity (and higher energy), at the LHC the accuracy of all 
measurements will in general increase, especially in the tail of distributions.


Precise predictions are necessary for the current and future measurements at 
the LHC. In order to match the experimental precision, NLO EW corrections 
and especially their Sudakov-logarithm components are essential.
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Improving SM predictions: fixed-order calculations
In the SM, contributions to the partonic cross section can be organised according 
to the powers of       and      (number of loop corrections and real emissions).

2.4 Total cross sections from 8 to 100 TeV

In addition to the studies performed for the LHC at 13 TeV, in this subsection we discuss
and show results for the dependence of the total cross section on the energy of the proton–
proton collision. In figure 19 NLO QCD total cross sections are plotted from 8 to 100 TeV, as
bands including scale and PDF uncertainties. The corresponding numerical values are listed
in table 4. As usual, central values refers to µ = µg, and scale uncertainties are obtained
by varying independently µr and µf in the standard interval [µg/2 < µf , µr < 2µg].

In the left plot of figure 19 we show the results for tt̄V -type processes, whereas tt̄tt̄

production and tt̄V V -type processes results are displayed in the right plot. In both plots
we show in the first and in the second inset the dependence of the K-factors at µ = µg on
the energy. The first insets refer to processes with zero total-charge final states, whereas
the second insets refer to processes with charged final states. The very different qualitative
behaviors between the two classes of processes is due to the fact that the former include
already at LO an initial state with gluons, whereas the latter do not. The gluon appears
in the partonic initial states of charged processes only at NLO via the (anti)quark–gluon
channel. At small Bjorken-x’s, the gluon PDF grows much faster than the (anti)quark
PDF. Thus, increasing the energy of the collider, the relative corrections induced by the
(anti)quark–gluon initial states leads to the growth of the K-factors and dominates in their
energy dependence. Also, as can be seen in figure 19 and table 4, these processes present a
larger dependence on the scale variation than the uncharged processes. [Davide: what don’t
you like of the previous sentence Fabio? ]

The differences in the slopes of the curves in the main panels of the plots are also
mostly due to the gluon PDF. Charged processes do not originate from the gluon–gluon
initial state neither at LO nor at NLO. For this reason, their growth with the increasing of
the energy is smaller than for the uncharged processes. All these arguments point to the
fact that, at 100 TeV collider, it will be crucial to have NNLO QCD corrections for tt̄W

±,
tt̄W

±
� and tt̄W

±
Z processes.

The fact that tt̄tt̄ production is the process with the rapidest growth is again due to
percentage content of gluon–gluon-initiated channels, which is higher than for all the other
processes. [Davide: Should we shows plots in figure 20? ]. From the left plot, it is easy
also to note that the scale uncertainty of tt̄tt̄ production is larger than for the tt̄V V -type
processes. In this case, the difference originates from the different powers of ↵s at LO; tt̄tt̄
production is of O(↵

4
s) whereas tt̄V V -type processes are of O(↵

2
s↵

2
). [Davide: Additional

comments??? ]
↵ ↵s O(↵s) O(↵) O(↵

2
s)
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2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield

2

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2
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sα),asym
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2
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s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)
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Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)
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|Mtt̄γ |
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=

∣

∣Mtt̄γ

O(αs

√
α)

∣

∣

2

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄γ
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(13)

F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
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interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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2Re
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√
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√
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∣

∣
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averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams

q

q

t

t

g
γ

t q

q

t

t
g

γ

t

q

q

t

t

g

q

γ q

q

t
t

g
q

γ

Figure 5: Real emissions of gluon: photon in the propagator

(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
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s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
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QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
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effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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DIFFERENCES:
Only couplings and color factor!
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Figure 2: Boxes QCD

for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3
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2.4 Total cross sections from 8 to 100 TeV

In addition to the studies performed for the LHC at 13 TeV, in this subsection we discuss
and show results for the dependence of the total cross section on the energy of the proton–
proton collision. In figure 19 NLO QCD total cross sections are plotted from 8 to 100 TeV, as
bands including scale and PDF uncertainties. The corresponding numerical values are listed
in table 4. As usual, central values refers to µ = µg, and scale uncertainties are obtained
by varying independently µr and µf in the standard interval [µg/2 < µf , µr < 2µg].

In the left plot of figure 19 we show the results for tt̄V -type processes, whereas tt̄tt̄

production and tt̄V V -type processes results are displayed in the right plot. In both plots
we show in the first and in the second inset the dependence of the K-factors at µ = µg on
the energy. The first insets refer to processes with zero total-charge final states, whereas
the second insets refer to processes with charged final states. The very different qualitative
behaviors between the two classes of processes is due to the fact that the former include
already at LO an initial state with gluons, whereas the latter do not. The gluon appears
in the partonic initial states of charged processes only at NLO via the (anti)quark–gluon
channel. At small Bjorken-x’s, the gluon PDF grows much faster than the (anti)quark
PDF. Thus, increasing the energy of the collider, the relative corrections induced by the
(anti)quark–gluon initial states leads to the growth of the K-factors and dominates in their
energy dependence. Also, as can be seen in figure 19 and table 4, these processes present a
larger dependence on the scale variation than the uncharged processes. [Davide: what don’t
you like of the previous sentence Fabio? ]

The differences in the slopes of the curves in the main panels of the plots are also
mostly due to the gluon PDF. Charged processes do not originate from the gluon–gluon
initial state neither at LO nor at NLO. For this reason, their growth with the increasing of
the energy is smaller than for the uncharged processes. All these arguments point to the
fact that, at 100 TeV collider, it will be crucial to have NNLO QCD corrections for tt̄W

±,
tt̄W

±
� and tt̄W

±
Z processes.

The fact that tt̄tt̄ production is the process with the rapidest growth is again due to
percentage content of gluon–gluon-initiated channels, which is higher than for all the other
processes. [Davide: Should we shows plots in figure 20? ]. From the left plot, it is easy
also to note that the scale uncertainty of tt̄tt̄ production is larger than for the tt̄V V -type
processes. In this case, the difference originates from the different powers of ↵s at LO; tt̄tt̄
production is of O(↵

4
s) whereas tt̄V V -type processes are of O(↵

2
s↵

2
). [Davide: Additional

comments??? ]
↵ ↵s O(↵s) O(↵) O(↵

2
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At the LHC, QCD is everywhere.

Nowadays, a “standard” prediction in the 
SM is at least at NLO QCD accuracy.


NNLO QCD is expected to be of the same 
order of NLO EW            .


NNLO EW, 
NNNLO QCD 

…..

of their hierarchy in terms of coupling constants. Secondly, weak contributions due to the

emission of potentially resolvable massive EW vector bosons need to be taken into account,

at least when one is not able to discard them in the context of a fully realistic analysis at

the level of final states. We have shown that, in the case of tt̄H inclusive production, these

processes may in fact not be entirely negligible in precision phenomenology studies.

We have compared the O(α2
Sα

2) predictions with those of O(α3
Sα), which constitute

the dominant (in terms of coupling hierarchy) contribution to NLO effects. We have found

that such a hierarchy, established a priori on the basis of the coupling-constant behaviour, is

amply respected at the level of fully-inclusive cross sections, for which the scale uncertainty

of the latter contribution is significantly larger than the whole O(α2
Sα

2) result. This picture

does change, however, when one emphasises the role of phase-space regions characterised by

some large scale (typically related to a high-pT configuration), which can be done by either

looking directly at the relevant kinematics, or at the inclusive level by applying suitable

cuts; both options have been considered here. The main conclusion is that, in these regions,

effects of weak origin play an important role, and that O(α2
Sα

2) results may be numerically

of the same order as theO(α3
Sα) ones. Therefore, tt̄H production appears to follow the same

pattern as other processes, where Sudakov logarithms can induce significant distortions of

spectra. This implies that the computation of weak contributions is a necessary ingredient

for precision phenomenology at large transverse momenta.
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large pt (Sudakov logs). Moreover they in general 
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Process Syntax Cross section (in pb) Correction (in %)

LO NLO

pp → e+νe p p > e+ ve QCD=0 QED=2 [QED] 5.2498 ± 0.0005 · 103 5.2113 ± 0.0006 · 103 −0.73 ± 0.01

pp → e+νej p p > e+ ve j QCD=1 QED=2 [QED] 9.1468 ± 0.0012 · 102 9.0449 ± 0.0014 · 102 −1.11 ± 0.02

pp → e+νejj p p > e+ ve j j QCD=2 QED=2 [QED] 3.1562 ± 0.0003 · 102 3.0985 ± 0.0005 · 102 −1.83 ± 0.02

pp → e+e− p p > e+ e- QCD=0 QED=2 [QED] 7.5367 ± 0.0008 · 102 7.4997 ± 0.0010 · 102 −0.49 ± 0.02

pp → e+e−j p p > e+ e- j QCD=1 QED=2 [QED] 1.5059 ± 0.0001 · 102 1.4909 ± 0.0002 · 102 −1.00 ± 0.02

pp → e+e−jj p p > e+ e- j j QCD=2 QED=2 [QED] 5.1424 ± 0.0004 · 101 5.0410 ± 0.0007 · 101 −1.97 ± 0.02

pp → e+e−µ+µ− p p > e+ e- mu+ mu- QCD=0 QED=4 [QED] 1.2750 ± 0.0000 · 10−2 1.2083 ± 0.0001 · 10−2 −5.23 ± 0.01

pp → e+νeµ−ν̄µ p p > e+ ve mu- vm~ QCD=0 QED=4 [QED] 5.1144 ± 0.0007 · 10−1 5.3019 ± 0.0009 · 10−1 +3.67 ± 0.02

pp → He+νe p p > h e+ ve QCD=0 QED=3 [QED] 6.7643 ± 0.0001 · 10−2 6.4914 ± 0.0012 · 10−2 −4.03 ± 0.02

pp → He+e− p p > h e+ e- QCD=0 QED=3 [QED] 1.4554 ± 0.0001 · 10−2 1.3700 ± 0.0002 · 10−2 −5.87 ± 0.02

pp → Hjj p p > h j j QCD=0 QED=3 [QED] 2.8268 ± 0.0002 · 100 2.7075 ± 0.0003 · 100 −4.22 ± 0.01

pp → W+W−W+ p p > w+ w- w+ QCD=0 QED=3 [QED] 8.2874 ± 0.0004 · 10−2 8.8017 ± 0.0012 · 10−2 +6.21 ± 0.02

pp → ZZW+ p p > z z w+ QCD=0 QED=3 [QED] 1.9874 ± 0.0001 · 10−2 2.0189 ± 0.0003 · 10−2 +1.58 ± 0.02

pp → ZZZ p p > z z z QCD=0 QED=3 [QED] 1.0761 ± 0.0001 · 10−2 0.9741 ± 0.0001 · 10−2 −9.47 ± 0.02

pp → HZZ p p > h z z QCD=0 QED=3 [QED] 2.1005 ± 0.0003 · 10−3 1.9155 ± 0.0003 · 10−3 −8.81 ± 0.02

pp → HZW+ p p > h z w+ QCD=0 QED=3 [QED] 2.4408 ± 0.0000 · 10−3 2.4809 ± 0.0005 · 10−3 +1.64 ± 0.02

pp → HHW+ p p > h h w+ QCD=0 QED=3 [QED] 2.7827 ± 0.0001 · 10−4 2.4259 ± 0.0027 · 10−4 −12.82 ± 0.10

pp → HHZ p p > h h z QCD=0 QED=3 [QED] 2.6914 ± 0.0003 · 10−4 2.3926 ± 0.0003 · 10−4 −11.10 ± 0.02

pp → tt̄W+ p p > t t~ w+ QCD=2 QED=1 [QED] 2.4119 ± 0.0003 · 10−1 2.3025 ± 0.0003 · 10−1 −4.54 ± 0.02

pp → tt̄Z p p > t t~ z QCD=2 QED=1 [QED] 5.0456 ± 0.0006 · 10−1 5.0033 ± 0.0007 · 10−1 −0.84 ± 0.02

pp → tt̄H p p > t t~ h QCD=2 QED=1 [QED] 3.4480 ± 0.0004 · 10−1 3.5102 ± 0.0005 · 10−1 +1.81 ± 0.02

pp → tt̄j p p > t t j QCD=3 QED=0 [QED] 3.0277 ± 0.0003 · 102 2.9683 ± 0.0004 · 102 −1.96 ± 0.02

pp → jjj p p > j j j QCD=3 QED=0 [QED] 7.9639 ± 0.0010 · 106 7.9472 ± 0.0011 · 106 −0.21 ± 0.02

pp → tj p p > t j QCD=0 QED=2 [QED] 1.0613 ± 0.0001 · 102 1.0539 ± 0.0001 · 102 −0.70 ± 0.02

Table 2. Processes considered in section 6.2. The second column reports the MG5 aMC syntax used to generate them. The third and fourth
columns display the fully-inclusive results for the quantities defined in eq. (6.12). The fifth column shows the results for the fractional correction
defined in eq. (6.14). All uncertainties are due to MC integration errors.
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to achieve a given accuracy — more details on this item can be found in section 2.4.3 of

ref. [17]. The overall runtime to compute all of the results presented in this section is a

couple of weeks on O(200) CPUs.

As was mentioned in section 2, MadLoop can choose dynamically which integral-

reduction module to employ; this is done in an order that is pre-defined by the user. In

the current MG5 aMC version, the default order is the following. One starts with double-

precision arithmetic, and Ninja is used first. If the internal numerical stability tests are not

passed (see section 2.4.2 of ref. [17]), Collier is used instead. If that also fails to provide

a stable result, CutTools is finally adopted. Yet another unstable result entails the use

of quadruple-precision computations, which are available in both Ninja and CutTools

(called again by MadLoop in this order, if necessary). The Ninja and CutTools integral-

reduction modules obtain the scalar integrals from OneLoop [114]. For the processes

considered in this paper, we have found that, with the accuracy as specified above, an

overall (i.e. relevant to all of the processes combined) negligible amount of O(100) phase-

space points have required quadruple-precision calculations, all of which were then deemed

to be numerically stable.

6.2 NLO EW corrections

In this section we present the leading LO and second-leading NLO (i.e. NLO EW) results

for a variety of processes, whose complete list can be found in the first column of table 2.

The second column of that table reports instead the MG5 aMC commands used to generate

those processes. These adhere to the general syntax reported in section 2; note in particular

the keywords34 that determine which coupling-constant combinations are considered in the

calculations, according to eqs. (2.8) and (2.9).

We start by looking at fully-inclusive rates, obtained with the conditions and accep-

tance cuts given in section 6.1. The third and fourth columns in table 2 report the LO

and NLO results, defined according to eq. (6.12). The fifth column displays instead the

fractional correction (given in percent) due to NLO EW effects, i.e.:

δEW =
ΣNLO2

ΣLO1

=
NLO

LO
− 1 . (6.14)

As was anticipated in section 6.1, all of the uncertainties reported in the three rightmost

columns in table 2 are MC integration errors; as one can see, in absolute value they are

almost always well below the per-mille level.35

Table 2 confirms the well-known fact that NLO EW effects to fairly inclusive observ-

ables are mostly negative, and rather small in absolute value (a few percent). Several

34The keyword [QED] is conventional, and it implies that both electromagnetic and weak effects (i.e. the

complete O(α) corrections) are taken into account, since both are included in the loop qcd qed sm Gmu

model. Restrictions to the QED-only or weak-only cases can be achieved by adopting a simpler theory

model (for those processes for which these restrictions are meaningful).
35The largest fractional error (still a mere 1.1 ·10−3 on the NLO cross section) affects HHW+ production.

We have checked that this is dominated by the opening at the NLO of a new t-channel configuration where

an initial-state photon couples directly to the W+. This channel is not mapped ideally by our phase-space

parametrisation.
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Structure of NLO EW-QCD corrections

_s
2_2__s

3 _s_
3 _4

_2_s_s
2_ _3

tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply

– 8 –

as example

LO,1
 LO,2
 LO,3


NLO,1
 NLO,2
 NLO,3
 NLO,4


NLO,1 = NLO QCD

NLO,2 = NLO EW


All the LO,i and NLO,i can be calculated in a completely  
automated way. We denote the complete set of LO,i and 
NLO,i as “Complete NLO”.


In general, NLO,3 and NLO,4 sizes are negligible,

but there are exceptions.


7



 and Complete-NLO studied in detail in Frederix, DP, Zaro ‘17 
and several subsequent publications.

NLO3

Automated Results: Complete NLO 
JHEP07(2018)185

pp→ tt̄ pp→ tt̄Z pp→ tt̄W+ pp→ tt̄H pp→ tt̄j

LO1 4.3803±0.0005 ·102 pb 5.0463±0.0003 ·10−1 pb 2.4116±0.0001 ·10−1 pb 3.4483±0.0003 ·10−1 pb 3.0278±0.0003 ·102 pb

LO2 +0.405± 0.001 % −0.691± 0.001 % +0.000± 0.000 % +0.406± 0.001 % +0.525± 0.001 %

LO3 +0.630± 0.001 % +2.259± 0.001 % +0.962± 0.000 % +0.702± 0.001 % +1.208± 0.001 %

LO4 +0.006± 0.000 %

NLO1 +46.164± 0.022 % +44.809± 0.028 % +49.504± 0.015 % +28.847± 0.020 % +26.571± 0.063 %

NLO2 −1.075± 0.003 % −0.846± 0.004 % −4.541± 0.003 % +1.794± 0.005 % −1.971± 0.022 %

NLO3 +0.552± 0.002 % +0.845± 0.003 % +12.242± 0.014 % +0.483± 0.008 % +0.292± 0.007 %

NLO4 +0.005± 0.000 % −0.082± 0.000 % +0.017± 0.003 % +0.044± 0.000 % +0.009± 0.000 %

NLO5 +0.005± 0.000 %

Table 3. Cross sections for the five tt̄+X processes of eqs. (6.23) and (6.24), resulting from the setup described in section 6.1. The uncertainties
quoted are of statistical nature only, originating from the Monte Carlo integration over the phase space. The subleading LO and NLO contributions
are given as percentage fractions of LO1.
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or an extra light jet:

pp −→ tt̄j . (6.24)

Since we consider all of the LO and NLO contributions, eqs. (6.2) and (6.3), we have

generated these processes in MG5 aMC by using the following commands:

MG5 aMC> generate p p > t t~ QED=2 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ z QED=3 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ w+ QED=3 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ h QED=3 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ j QED=3 QCD=3 [QCD QED]

The syntax of these commands has already been discussed in section 2. We point out

that in the case of tt̄j production at these perturbative orders massless leptons must also

be included in the definition of both the p and j multiparticles, in keeping with what is

explained in appendix D. This can be done by executing the following commands:

MG5 aMC> define p = p e+ e- mu+ mu- ta+ ta-

MG5 aMC> define j = p

immediately after the p and j definitions given at the beginning of section 6.1, and before

the process-generation command. The computation of tt̄W− production would not pose

any additional problem w.r.t. that of pp → tt̄W+; it is not carried out here. The results for

all the LO and NLO terms have already been computed with a private version of MG5 aMC

for the pp → tt̄ and pp → tt̄W+ processes, and presented in refs. [39, 40], respectively (in the

latter paper, predictions for pp → tt̄tt̄ are reported as well). Recently, the NLO corrections

to tt̄j production, bar for photon-induced processes, have been computed in ref. [41]. The

complete NLO corrections for pp → tt̄Z and pp → tt̄H are given here for the first time.

We start by considering total rates, which we report in table 3. The first row displays

the LO1 contributions to the cross sections, given in pb. Rows 2–9 present instead all of

the other contributions, as fractions over the LO1 one, namely:

ΣLOi

ΣLO1

, i = 2, 3, 4 , (6.25)

ΣNLOi

ΣLO1

, i = 1, . . . 5 ; (6.26)

note that ΣLO4 and ΣNLO5 are identically equal to zero for all processes bar that of

eq. (6.24). As for all the results shown so far, the uncertainties are solely associated with

MC integration errors. We point out that the predictions of table 3 have been generated

independently from those reported in section 6.2 (see in particular table 2 and figure 9),

and are therefore slightly different from the latter (while being statistically compatible with

them) — see the discussion immediately before eq. (6.12). As expected, for fully inclusive

rates all contributions apart from the LO1 and NLO1 ones are small, with the exception

of the NLO3 term (and, to a smaller extent, of the NLO2 one as well) in tt̄W+ production

— this constitutes a +12% correction of the LO1 cross section, and can be understood as

due to the opening of a tW scattering process, as was already suggested in refs. [40, 166].
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NLO3 in ttW is ~12%:
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Other processes show this kind of enhancements (VBS: see talk of 
Mathieu Pellen), but they are exceptions.




Differential distributions: Sudakov enhancements 
Sudakov enhancements are NOT exceptions and involve at NLO corrections of 
order  with .  −α logk(s/m2
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Figure 7. Transverse momentum of the hardest same-flavour dressed-lepton pair in the processes of
eq. (6.17) (left panel), and Higgs transverse momentum in the processes of eq. (6.18) (right panel).

We have chosen the two processes in eq. (6.17) in order to be definite, as representatives of

the class of reactions with four final-state leptons; both have been studied before [26, 27,

30, 35, 130, 131]. In fact, without any additional complications, MG5 aMC is able to deal

with any process that belongs to this class, regardless of the particular flavour and charge

combinations.

In detail, the definitions of the pT (ll) (relevant to pp → e+e−µ+µ−) and pT (lν) (relevant

to pp → e+νeµ−ν̄µ) observables are the following. For the former, one uses dressed leptons;

the e+e− and µ+µ− pairs transverse momenta are then computed, and the largest of the

two is set equal to pT (ll). In the latter case, charged leptons are again dressed first; then,

the transverse momenta of the e+νe and µ−ν̄µ pairs are computed (by using the MC truth

information to find the neutrinos), and the largest of the two is set equal to pT (lν). The

NLO EW corrections behave rather differently for the two processes. While for the four

charged lepton process they display the typical Sudakov behaviour at high pT , for the other

process the corrections are positive and growing for pT ! 40 GeV, starting to decrease only

towards pT " 400 GeV. We point out that the two processes have significant differences in

their underlying mechanisms. Firstly, although both 2l2ν and 4l production are dominated

by di-boson resonant contributions (namely, di-W and di-Z, respectively), it is only the

former case that features diagrams with t-channel spin-one exchanges (thus enhanced at

large momentum transfers). These appear in γγ-initiated processes, owing to the direct

γW+W− coupling. Secondly, partonic processes such as γq → W+∗W−∗q′ that give rise

to 2l2ν final states may be enhanced at large lepton-pair pT ’s owing to quasi-collinear

q∗ → W ∗q′ splittings (see e.g. ref. [121]). While a similar mechanism also occurs in 4l

production, in that case its effects are balanced by a stronger suppression than in the

case of 2l2ν production.39 Finally, at the NLO 2l2ν production features a real-emission

contribution due to an underlying tW doubly-resonant mechanism, which might induce very

39The overall impact of quasi-collinear enhancements on observable cross sections ultimately depends on

the interplay between their kinematics characteristics, the partonic matrix elements, and PDF effects —

see e.g. refs. [132, 133] for discussions on this point.
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Figure 8. Transverse momentum of the hardest vector boson in the processes of eq. (6.19) (left
panel), and transverse momentum of the Higgs boson in the processes of eq. (6.20) (right panel).
Some of the histograms in the main frames are rescaled as indicated in order to enhance their
visibility.

since it receives contributions from real-emission diagrams with an s-channel top quark

(i.e. from an underlying t∗W−Z or t̄∗W+Z production mechanism). Thus, while tech-

nically this process is doable in our setup by setting the top width equal to its physical

value in order to prevent the matrix elements from diverging on the top resonance (see

section 5.5), potentially it still poses the problems common to all processes which, at the

NLO, “interfere” with a top-induced “background” (such as instabilities in the numerical

integration caused by extremely large K factors). We have already discussed an example

(W+∗W−∗ production, eq. (6.17)) where such an interference in practice does not lead to

any issues at the perturbative orders we are interested in. However, the case of ZW−W+

production is much more involved, and therefore we prefer to postpone its study to when

MG5 aMC will feature an automated treatment of the subtraction or removal of resonant

contributions, with procedures analogous to those already considered in the literature in

different contexts.41 Another, simpler, solution is that of performing the computation in a

scheme with four flavours. This will not be done here, but it is feasible with the present

version of MG5 aMC (we note that a 4FS restriction of the OS model is available, while

its CM counterpart has still to be constructed).42

From the inset in left panel of figure 8, we see that ZZZ production exhibits the

typical behaviour of NLO EW corrections, which are small at small transverse momentum,

and grow in absolute value with pT . The other two processes in eq. (6.19) display a more

intricate behaviour, owing to a combination of effects: the virtual Sudakov corrections,

which decrease the rates; and the positive enhancement of the cross section, due to the

41The procedures that are being implemented in MG5 aMC are fully local in the phase-space of final-

state particles, such as those of refs. [145–153]. Global [134, 154–156] or semi-local [157–160] approaches

are not suited to automated observable-independent short-distance computations.
42Another possibility in the context of a five-flavour computation is that of adding a dedicated integration

channel for each of the new resonant contributions that open at the NLO level.
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What are EW Sudakov logarithms?
QCD: virtual and real terms are separately IR divergent (  poles). In 
physical cross sections the contributions are combined and poles cancel.


QED: same story, but I can also regularise IR divergencies via a photon-
mass . So  poles  , where  is a generic scale.


EW: with weak interactions  and W and Z radiation are 
typically not taken into account, which is anyway IR-safe.


Therefore, at high energies EW loops induce corrections of order





where k is the number of loops and . These logs are physical. Even 
including the real radiation of W and Z, there is not the full cancellation of 
this kind of logarithms. 

1/ϵ

λ 1/ϵ → log(Q2/λ2) Q

λ → mW, mZ

−αk logn(s/m2
W)

n ≤ 2k
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Automation
However, only two tools are able to compute them for a generic 
SM process. Both have appeared in the literature in the last two 
years.


- SHERPA (Bothmann, Napoletano ’20)


- MadGraph5_aMC@NLO (DP, Zaro ‘21)


For specific classes of processes this has been done in the past 
also in ALPGEN (Chiesa et al. ’13).


All these works are based on the Denner&Pozzorini 
algorithm for one-loop EW Sudakov corrections (Denner, 
Pozzorini ’01).
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SHERPA

13

The Denner&Pozzorini algorithm for one-loop EW Sudakov 
corrections has been implemented in its original form.
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Figure 2: The transverse momentum of the individual W bosons in W boson pair production from proton-
proton collisions (including photon induced channels) at

p
s = 13TeV (left) and 100TeV (right).

The baseline LO and NLO EW calculations are compared with the results of the LO+NLL cal-
culation and its variant, where the logarithmic corrections are resummed (“LO+NLL (resum)”).
In addition, the virtual approximation EWvirt and a variant of the NLO EW calculation with
additional jets vetoed are also included. The ratio plots show the ratios to the LO and to the
EWvirt calculation, and the relative size of each NLL contribution.

approximation, respectively. The aim is to show the general behaviour of EW corrections in the tail of
distributions in the former, while the latter serves as a direct comparison between the Sudakov and the
EWvirt approximations. Finally the fourth panel shows the relative impact of the individual contributions
�c appearing in Eq. (2.14).
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Figure 2: The transverse momentum of the individual W bosons in W boson pair production from proton-
proton collisions (including photon induced channels) at

p
s = 13TeV (left) and 100TeV (right).
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Comparisons with SHERPA 
+ OpenLoops results at 
NLO EW accuracy have 
been performed.


Sudakov approximation 
works quite well for WW 
when the j e t ve to i s 
applied.


R e s u m m a t i o n o f E W 
Sudakov logar i thms is 
essential for precision.


Bothmann, Napoletano ’20



already discussed in this conference …
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Multi-jet merging

Motivation: include EW corrections along with QCD corrections

Non trivial for QCD multi-merged samples
! Extension of [Bräuer, Denner, MP, Schönherr, Schumann; 2005.12128] for WWj

Complicated task due to interferences

CPU costly for high multiplicity

Mathieu PELLEN NLO EW overview for multi-bosons and VBS at LHCb 10 / 37



Automation of

EW Sudakov logarithms in 


MadGraph5_aMC@NLO

15

DP, Zaro ’21



Why automate Sudakov in Madgraph5_aMC@NLO?

NLO EW corrections already fully include one-loop EW Sudakov logarithms 
, why automate them?


- They can be calculated analytically via tree-level amplitudes only. 
They are a very good approximation of NLO EW at high energy and 
they can be computed much faster. No cancellations among virtual 
and real, so very stable results.


- When NLO EW becomes large and negative, Sudakov logarithms 
have to be resummed. Having in one tool separately the exact NLO 
EW and its Sudakov component will allow matching of NLO EW and 
EW LL resummed.

- They depend only on properties of the external particles: masses, 
momenta, helicities, charges, SU(2) components, hypercharges. The 
generalisation to the BSM case is therefore much easier than the 
NLO EW case.

(n = 1, k = 1,2)
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Our revisitation and automation: Amplitude level
We have revisited and automated in aMG5 the Denner&Pozzorini 
algorithm for the evaluation of one-loop EW Sudakov corrections to 
amplitudes (Denner, Pozzorini ’01). In particular we have introduced the 
following novelties. 


- IR QED divergencies are dealt with via Dimensional Regularisation, 
with strictly massless photons and light fermions.


- Additional logarithms that involve ratios between invariants, and 
therefore angular dependences, are taken into account.


- We correctly take into account an imaginary term that was previously 
omitted in the literature. Relevant for  processes with 

- Moving to the level of interferences of tree and one-loop amplitudes, 
we take into account NLO EW contributions originating from QCD 
loops on top of subleading LO terms.

2 → n n > 2
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Master formula (Denner&Pozzorini)

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent

class of logarithms, while the latter involves mass ratios and ratios of invariants. The

quantity �
C consists of the collinear logarithms, originating from virtual collinear gauge

bosons from external lines and field renormalisation constants. The logarithms resulting

from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
PR. In the case of longitudinally polarised bosons the equivalences

M
...W

±
L ...

0 = M
...�

±
...

0 ,

M
...ZL...

0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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Sudakov corrections:

the logsother tree-level

amplitudes
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eikonal approximation of 

soft EW boson exchange 

Leading 

Soft-Collinear

Subleading 

Soft-Collinear Collinear

Parameter

renormalis.

It depends only on 
s and it is the only 
t e r m i n v o l v i n g 
double logarithms.

configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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T h e o n l y o n e 
involving ratios of s 
with other invariants 
and also angular 
dependences.

In an on-she l l scheme, the 
d e p e n d e n c e o n t h e U V 
regularisation scale cancels. No  
dependence is left.

μr

The logs inside the  have 
always the form.

δi

M = MW, MZ, mf , λ, …

masses. In other words, if k and l are two generic external particles with momenta pk and

pl respectively, then

rkl ⌘ (pk + pl)
2
' 2pkpl � M

2
W ' M

2
H ,m

2
t ,M

2
W ,M

2
Z . (2.2)

It is interesting to note that the condition (2.2) still allows for kinematic configurations

with rkl � rk0l0 � M
2
W
, where the quantities rkl and rk0l0 represent a generic pair of the

many possible invariants that one can build with two external momenta. However, since

the required formal accuracy consists of the DL and SL in (2.1), although logarithms of

the form
↵

4⇡
log2

rkl

rk0l0
and

↵

4⇡
log

rkl

rk0l0
, (2.3)

are present at O(↵) and can be non-negligible for configurations with rkl � rk0l0 � M
2
W
,

they are not taken into account. In other words, the algorithm assummes the regime (2.2),

but large logarithms may be anyway not captured unless the condition

rkl/rk0l0 ' 1 (2.4)

is satisfied for any possible pair of rkl and rk0l0 invariants.

In fact, condition (2.4) is quite unrealistic for actual calculations in collider physics,

since cross sections are dominated precisely by regions where one or more rkl invariants tend

to be much smaller than s ⌘ r12 � M
2
W
. Indeed, the rkl are related with the invariants

entering the propagators. Even if cuts are devised in order to maximise any possible value

of rkl for a given s, the fulfilment of condition (2.4) is strictly impossible. For instance,

if (2.2) is valid, one has that min(rkl/s) < 0.5 for a 2 ! 2 process. This bound is even

tighter and tighter for a generic 2 ! n process with n growing.1

It is worth to remind the reader an important limitation of the DP algorithm. For a

given process, at least one helicity configuration of the matrix element must not be mass

suppressed, i.e., it must not vanish in the limit M2
W
/s ! 0.2 Indeed, such an assumption is

one of the hypotheses under which the algorithm has been derived. On the other hand, most

of the processes do satisfy this hypothesis, having at least one helicity configuration that is

not mass suppressed3. Moreover, thanks to the condition (2.2), helicity configurations that

are notmass suppressed are by definition also dominant in the kinematic regime considered.

The condition (2.2) also implies that processes including unstable particles and their decays

cannot be treated in this approximation if physical observables are dominated by resonant

1Finding the configuration where all invariants are large in a 2 ! n process requires the determination

of the largest possible value for the minimum angle between any two of the n final-state momenta. This is

the typical example of a mathematical problem that it is easy to define and with a solution that is far from

trivial. See for example http://neilsloane.com/packings/index.html#I.
2An equivalent formulation of this condition is that the scaling of the matrix element M with the centre-

of-mass energy
p
s must coincide with what one expects from dimensional analysis: a non mass-suppressed

helicity configuration of a matrix elements with n external legs should scale as
p
s4�n. See footnote 3 for

a counterexample.
3 Exceptions are possible, an important one is Higgs production via vector-boson fusion. Dimensional

analysis for a 2 ! 3 matrix element requires [M] = GeV�1, and for this specific process the matrix element

scales with the energy as M / MW
s .
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ASSUMPTIONS:
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It is worth to remind the reader an important limitation of the DP algorithm. For a

given process, at least one helicity configuration of the matrix element must not be mass

suppressed, i.e., it must not vanish in the limit M2
W
/s ! 0.2 Indeed, such an assumption is

one of the hypotheses under which the algorithm has been derived. On the other hand, most

of the processes do satisfy this hypothesis, having at least one helicity configuration that is

not mass suppressed3. Moreover, thanks to the condition (2.2), helicity configurations that

are notmass suppressed are by definition also dominant in the kinematic regime considered.

The condition (2.2) also implies that processes including unstable particles and their decays

cannot be treated in this approximation if physical observables are dominated by resonant

1Finding the configuration where all invariants are large in a 2 ! n process requires the determination

of the largest possible value for the minimum angle between any two of the n final-state momenta. This is

the typical example of a mathematical problem that it is easy to define and with a solution that is far from

trivial. See for example http://neilsloane.com/packings/index.html#I.
2An equivalent formulation of this condition is that the scaling of the matrix element M with the centre-

of-mass energy
p
s must coincide with what one expects from dimensional analysis: a non mass-suppressed

helicity configuration of a matrix elements with n external legs should scale as
p
s4�n. See footnote 3 for

a counterexample.
3 Exceptions are possible, an important one is Higgs production via vector-boson fusion. Dimensional

analysis for a 2 ! 3 matrix element requires [M] = GeV�1, and for this specific process the matrix element

scales with the energy as M / MW
s .
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Derivation of LSC and SSC

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
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k=1
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Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
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∫ d4q

(2π)4
−4ie2pkplI
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(l)Mi1...i′k ...i

′
l...in
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(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1
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n
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IVa

i′
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ik
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i′
l
il
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′
l
...in

0 [L(|rkl|,M2
Va
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k,λ
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
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rkl
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◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities
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where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2
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2
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), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process
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the logarithms l(M2
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limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
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In LA the corrections assume the form
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i.e. they factorize as a matrix, and are split into various contributions according to their
origin:
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spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
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A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections
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to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Denner&Pozzorini

LSC SSC

The relation  is used in all logs, unless they multiply .rkl = rk′￼l′￼= s l(s)

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the
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real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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2
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W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
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0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms
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Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
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where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are
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are identified as the leading soft-collinear (LSC) contribution, which as already mentioned
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term leads to the angular-dependent subleading soft-collinear (SSC) contribution.
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± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],
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◆
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where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
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The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve
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enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
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↵
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↵
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M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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The relation  is used in all logs, unless they multiply .rkl = rk′￼l′￼= s l(s)

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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Our approach:    
irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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          in the expressionsrkl = rk′￼l′￼= s
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Therefore, further angular 
dependencies are taken 
into account.
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Implementation

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent

class of logarithms, while the latter involves mass ratios and ratios of invariants. The

quantity �
C consists of the collinear logarithms, originating from virtual collinear gauge

bosons from external lines and field renormalisation constants. The logarithms resulting

from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
PR. In the case of longitudinally polarised bosons the equivalences

M
...W

±
L ...

0 = M
...�

±
...

0 ,

M
...ZL...

0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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One-loop EW 
Sudakov corrections:

the logsother tree-level

amplitudes

and techniques for tensor-integral reduction [112–114], all automated within the module

MadLoop [18]. Moreover, the codes CutTools [115], Ninja [116, 117] and Collier [118]

are employed within MadLoop, which has been optimised by taking inspiration from Open-

Loops [20] for the integrand evaluation.

As already possible in the code, NLO QCD and EW corrections can be invoked via the

syntax [QCD] [QED], see Refs. [16, 17] for more details. However, now the code allows also

for the evaluation of virtual one-loop Sudakov logarithms by adding after the command

generate or add process the flag --ewsudakov. As we have said, the code works for the

moment for O(↵) corrections to the ⌃LOi contribution with i = 1 and i = k, according to

eqs. (3.1) and (3.2). In order to implement the DP algorithm in MadGraph5 aMC@NLO,

three main technical features had to be implemented:

1. The generation of all the amplitudes that are necessary for the computation of the

DL and SL.

2. The evaluation of the amplitudes, especially the interferences of amplitudes involving

di↵erent external legs.

3. The evaluation of the derivatives of the amplitudes, which enter the formulas con-

cerning the PR terms.

In the following subsections we address each of the previous points.

5.1 Generation of the amplitudes

We start discussing the case of a generic partonic process

'i1(p1)'i2(p2) ! 'i3(p3) . . .'in(pn) , (5.1)

and at the end we return to the case of proton–proton collisions.

The formulas of Sec. 2, which are given for n ! 0 processes, can be easily reframed in

terms of more common 2 ! n� 2 amplitudes, via crossing symmetry.

Mi1...in(p1, . . . , pn) ⌘ M('i1(p1) . . .'in(pn) ! 0)

= M('i1(p1)'i2(p2) ! '̄i3(�p3) . . . '̄in(�pn)) (5.2)

As a first step, the algorithm checks if longitudinally polarised Z or W bosons are present

in the external legs. In such a case all the possible amplitudes that can be obtained

with one or more substitutions according to eq. (2.13) are generated. In other words,

starting from Mi1...{nWW±}{nZZ}...in , where {nWW
±
} and {nZZ} stands for nW and nZ

appearances of W and Z bosons respectively, the amplitudes Mi1...{(nW�1)W±}�±{nZZ}...in
and Mi1...{nW±}{(nZ�1)Z}�...in are recursively generated via the substitutions

Z �! � , (5.3)

W
±

�! �
±
, (5.4)

up to the point that allW and/or Z bosons are transformed into Goldstone bosons. Clearly,

any of the previous substitutions can lead to a process for which no tree-level Feynman
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diagram can contribute to the amplitude. Such a case is automatically detected by the

code and the amplitude is not generated. From this point on, while the original amplitude

Mi1...{nWW±}{nZZ}...in is retained and used for the computation of the LO cross section,

the complete set of amplitudes

Mi1...{(nW�kW )W±}{kW�±}{(nZ�kZ)Z}{kZ�}...in , (5.5)

with 0  kW  nW and 0  kZ  nZ is used for the following steps in the generation of

the amplitudes.

As discussed in Sec. 2, the formulas for the di↵erent contributions leading to DL and SL

involve amplitudes with external particles that are di↵erent from the original ones in M0.

In particular, starting from the process in (2.9) it is necessary to generate the amplitudes

for all the processes

'i1(p1) . . .'i
0
k
. . .'in(pn)! 0 , (5.6)

with 1  k  n that can be obtained applying the substitution 'ik ! 'i
0
k
of the form:

Z  ! A , (5.7)

H  ! � . (5.8)

With the symbol  ! we understand that the substitution works in the two directions.

Substitution (5.7) is necessary for the non-diagonal components of Cew entering the LSC

terms and of bew
N 0N entering the C terms. Substitution (5.8) is necessary for the non-diagonal

components of (IZ)2 entering the neutral SSC terms. Moreover it is necessary to generate

also the amplitudes for the processes

'i1(p1) . . .'i
0
k
. . .'i

0
l
. . .'in(pn)! 0 , (5.9)

that can be obtained either applying two substitutions 'ik ! 'i
0
k
and 'il ! 'i

0
l
of the

form (5.8), again for the non-diagonal components of (IZ)2 in the neutral SSC terms, or

two di↵erent 'ik ! 'i
0
k
and 'il ! 'i

0
l
substitutions that together do not violate charge

conservation, each one of them of the form:

f�  ! f�� , (5.10)

H  ! �
±
, (5.11)

�  ! �
±
, (5.12)

A  ! W
±
, (5.13)

Z  ! W
±
. (5.14)

The substitutions (5.10)–(5.14) originate from the purely non-diagonal structure of

I
±
I
⌥ entering the charged SSC terms. We remind the reader that both the substitutions

(5.7)–(5.8) for the processes (5.6) and (5.10)–(5.14) for the processes (5.9) have to be

performed starting from each one of the possible processes in (5.5) that can be obtained

from (2.9) via the substitutions (5.3)–(5.4).

For hadronic calculations the initial-state at the Born is itself given by a set of di↵erent

partonic initial states. The procedure described so far has to be therefore repeated for

each partonic initial-state that can contribute at the Born level to the final-state that is

considered.
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Relevant for LSC and 
C contributions.

Re levan t f o r SSC 
charged contributions.

Amplitudes with one or 2 
different external particles w.r.t. 
the Born have to be generated.



We can validate the new implementation, and 
check the relevance of the novelties introduced 
comparing the results with the MadLoop output.

one-loop EW virtual corrections 
 =

 [Sudakov Logs  +
 constant term  +

mass-suppressed terms ]

𝒪(α)

α 𝒪(−logk(s/m2
W), k = 1,2)

𝒪(1)
𝒪(m2

W /s)

We consider only the finite part of the MadLoop output setting 
. Due to the QED component, the virtual contribution is 

total IR divergent and therefore not physical.
Q2 = s
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Example ( ):  scan in 2 → 2 uū → ZZ s

new implementation of the modifiedDP algorithm described in this work. Dashed lines refer

to the pure LA (SSCs!rkl terms not included), denoted in the plots as “SDK, s ! rkl OFF”,

while the solid lines to the case in which SSCs!rkl terms are taken into account, denoted

in the plots as “SDK, s ! rkl ON”. As expected, the values of the ratio over LO for

both dots and lines are negative and grow in absolute value for large values of s. A correct

implementation and evaluation of the LA of Sudakov logarithms implies that the di↵erences

between each line and the dots converge to a constant value for s ! 1. Indeed, since all

the mass-suppressed terms of O(↵) corrections go to zero for large s, the terms that survive

are either logarithmic enhanced, those that have to be exactly captured by the LA (lines),

or constant for t/s fixed. We therefore separately display the interpolation of the di↵erence

between the dots and the solid line (second inset) and between the dots and the dashed

line (third inset). These quantities are denoted as (Virt-SDK)/LO in the plots. The layout

of the lower plots of Figs. 1 and 2 is very similar to the one of the upper plots, however, in

this case the x-axis corresponds to the angle ✓ between the first and third particle, which

in turn parametrises the value of t, in the range 10�2 . ✓ . ⇡/2. We have fixed the value

of s to
p
s = 10 TeV for all lower plots.

In order to produce the upper plots, the scan in
p
s with t/s fixed, we have performed

the following procedure. We start by generating the momenta for a phase-space point with
p
s = 103 GeV and t/s = �1/20 for the specific process considered. Then, we iteratively

repeat the following steps for increasing the value of
p
s by keeping fixed the t/s ratio

within an error of the order of permille. First, we rescale the trimomenta of the outgoing

particles by a common factor. Second, we impose on-shell conditions for the outgoing

particles in order to obtain their energies. Finally, we impose momentum conservation for

determining the momenta of the initial state. In this way, we can generate several phase-

space points by scanning the
p
s range and keeping the ratio t/s very stable. Each one of

the phase-space points obtained is then used as input for evaluating the exact virtual NLO

EW corrections of O(↵) as well the LA with and without the inclusion of the SSCs!rkl

terms. The SDK, s ! rkl ON and the SDK, s ! rkl OFF lines are the interpolation of

these LA results.

As can be seen in both Figs. 1 and 2, all the second and third insets of upper plots show

perfectly horizontal lines for large values of s, for each individual helicity configuration.

We have shown here only representative processes, but we did not see any exception in all

cases that we have checked. This is a clear sign of a correct implementation of the LA of

Sudakov logarithms.

In order to rigorously check the last statement, we have fitted the quantities (Virt-

SDK)/LO via a function of the form

A log10(
p
s/[1 GeV]) +B , (6.2)

with the method of least squares. While the coe�cient B has been found in general of the

order of few percents for the plots shown here, the quantity A is in general of the order of

10�4 and compatible with 0 due to the associated statistical error,14 therefore supporting

our previous statement about the correct implementation of the LA of Sudakov logarithms.
14We remind the reader that statistical errors also include e↵ects induced by the numerical method that
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Denner&Pozzorini algorithm works only with non 
mass-suppressed LO processes: we select only 
helicity configurations > 10^(-3) of the dominant 
one.

Dots: NLO EW (MadLoop). Lines = Sudakov.

Dashed: standard approach.

Solid: our formulation (more angular information)

Dots-Solid/LO: horizontal, the correct Log 
dependence is captured.

Dots-Dashed/LO: horizontal, the correct Log 
dependence is captured.
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Example ( ):  scan in 2 → 2 uū → ZZ θ

Denner&Pozzorini algorithm works only with non 
mass-suppressed LO processes: we select only 
helicity configurations > 10^(-3) of the dominant 
one.

Dots: NLO EW (MadLoop). Lines = Sudakov.

Dashed: standard approach.

Solid: our formulation (more angular information)

Dots-Solid/LO: quite horizontal, the correct 
Log dependence is very-well approximated.

Dots-Dashed/LO: not horizontal, the correct 
Log dependence is lost.
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Example ( ): Imaginary term and scan in 2 → 3 s

new implementation of the modifiedDP algorithm described in this work. Dashed lines refer

to the pure LA (SSCs!rkl terms not included), denoted in the plots as “SDK, s ! rkl OFF”,

while the solid lines to the case in which SSCs!rkl terms are taken into account, denoted

in the plots as “SDK, s ! rkl ON”. As expected, the values of the ratio over LO for

both dots and lines are negative and grow in absolute value for large values of s. A correct

implementation and evaluation of the LA of Sudakov logarithms implies that the di↵erences

between each line and the dots converge to a constant value for s ! 1. Indeed, since all

the mass-suppressed terms of O(↵) corrections go to zero for large s, the terms that survive

are either logarithmic enhanced, those that have to be exactly captured by the LA (lines),

or constant for t/s fixed. We therefore separately display the interpolation of the di↵erence

between the dots and the solid line (second inset) and between the dots and the dashed

line (third inset). These quantities are denoted as (Virt-SDK)/LO in the plots. The layout

of the lower plots of Figs. 1 and 2 is very similar to the one of the upper plots, however, in

this case the x-axis corresponds to the angle ✓ between the first and third particle, which

in turn parametrises the value of t, in the range 10�2 . ✓ . ⇡/2. We have fixed the value

of s to
p
s = 10 TeV for all lower plots.

In order to produce the upper plots, the scan in
p
s with t/s fixed, we have performed

the following procedure. We start by generating the momenta for a phase-space point with
p
s = 103 GeV and t/s = �1/20 for the specific process considered. Then, we iteratively

repeat the following steps for increasing the value of
p
s by keeping fixed the t/s ratio

within an error of the order of permille. First, we rescale the trimomenta of the outgoing

particles by a common factor. Second, we impose on-shell conditions for the outgoing

particles in order to obtain their energies. Finally, we impose momentum conservation for

determining the momenta of the initial state. In this way, we can generate several phase-

space points by scanning the
p
s range and keeping the ratio t/s very stable. Each one of

the phase-space points obtained is then used as input for evaluating the exact virtual NLO

EW corrections of O(↵) as well the LA with and without the inclusion of the SSCs!rkl

terms. The SDK, s ! rkl ON and the SDK, s ! rkl OFF lines are the interpolation of

these LA results.

As can be seen in both Figs. 1 and 2, all the second and third insets of upper plots show

perfectly horizontal lines for large values of s, for each individual helicity configuration.

We have shown here only representative processes, but we did not see any exception in all

cases that we have checked. This is a clear sign of a correct implementation of the LA of

Sudakov logarithms.

In order to rigorously check the last statement, we have fitted the quantities (Virt-

SDK)/LO via a function of the form

A log10(
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with the method of least squares. While the coe�cient B has been found in general of the

order of few percents for the plots shown here, the quantity A is in general of the order of

10�4 and compatible with 0 due to the associated statistical error,14 therefore supporting

our previous statement about the correct implementation of the LA of Sudakov logarithms.
14We remind the reader that statistical errors also include e↵ects induced by the numerical method that
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Denner&Pozzorini algorithm works only with 
non mass-suppressed LO processes: we select 
only helicity configurations > 10^(-3) of the 
dominant one.

Dots: NLO EW (MadLoop). Lines = Sudakov.

Dashed: standard approach,  omitted

Solid: our formulation,  included


iπΘ(rkl)
iπΘ(rkl)

Dots-Solid/LO: horizontal, the correct Log 
dependence is captured.

Dots-Dashed/LO: not horizontal, the 
correct Log dependence is lost.

with n > 2. In this section we show numerical results about this aspect, for 2 ! n partonic

processes with n = 3, 4. Again, we select representative processes for which the relevant

plots are displayed in Fig. 3. Each plot shows the dependence on s of several quantities,

and the layout is very similar to the one of the upper plots of Figs. 1 and 2. Here, the

LA always includes the SSCs!rkl terms,16 but we distinguish the case in which the terms

proportional to i⇡⇥(rkl) in eqs. (2.23)-(2.25) are excluded, as in the original DP algorithm

in Ref. [39], or retained. The former are displayed as dashed lines (i⇡⇥(rkl) OFF) and the

latter as solid lines (i⇡⇥(rkl) ON). For each leading helicity configuration, we also show

in the second and third inset the di↵erence between the LA and the exact result both

normalised to the LO, respectively with and without taking into account the imaginary

component.

In order to produce the plots, scanning in
p
s, we have performed a procedure similar

to the one explained in the previous section for the upper plots in Figs. 1 and 2. The only

di↵erence here is the starting point. For 2 ! n partonic processes with n > 2, besides

s, there is more than only one independent kinematic invariant that can be built via the

external momenta. In order to avoid pathological configurations with an |rkl| ' M
2
W
, we

randomly generate the first set of external momenta setting
p
s = 104 GeV and requiring

|rkl|

s
>

1

8
8 rkl . (6.3)

We remind the reader, as already explained in footnote 1, that eq. (6.3) is a condition that

can be satisfied for 2 ! 3 or 2 ! 4 processes, but not in general for 2 ! n, for which this

lower bound has to be lowered more and more increasing the value of n, further departing

from the condition of eq. (2.4).

Looking at Fig. 3, it is manifest how the case including terms proportional to i⇡⇥(rkl)

correctly catches the LA, while the other one does not; perfectly horizontal lines are present

in the second inset, while in the third inset a dependence on s is clearly visible. For some

of the processes considered, such as dd̄ ! Zdd̄, this dependence seems to cancel out for

the sum over the di↵erent helicity configurations. In large part this is correct, but a small

dependence is still present and it is simply not visible from the plot. We in general see this

feature also for individual helicity configurations, namely the i⇡⇥(rkl) is often formally

relevant but sometimes the numerical e↵ect is very small. For other processes, such as

e
+
e
�

! e
+
e
�
µ
+
µ
� or ud ! Zud, even for the helicity-summed result the lack of the

terms proportional to i⇡⇥(rkl) leads to sizeable numerical e↵ects.

In order to provide a more quantitative statement, we list in Tab. 1 the results of

the fit of (Virt-SDK)/LO for each leading-helicity configuration (and their sum) of the

process dd̄ ! Zdd̄. We have used again the method of least squares and the functional

form of eq. (6.2). As can be seen in the third column of Tab. 1, all helicities exhibit a

non-vanishing slope when the terms proportional to i⇡⇥(rkl) are turned o↵. Notably, as

anticipated before, this happens also for the sum over the helicities, which for this particular

process and kinematic configuration (condition (6.3)) leads to a cumulative error of 2.6% in

the LA for every factor of 10 in increase of the energy. The error is process dependent and

16For brevity, in this section we will write in the plots only SDK and not SDK, s ! rkl ON as in Sec. 6.2.
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Example ( ): Imaginary term and scan in 2 → 4 s

Denner&Pozzorini algorithm works only with 
non mass-suppressed LO processes: we select 
only helicity configurations > 10^(-3) of the 
dominant one.

Dots: NLO EW (MadLoop). Lines = Sudakov.

Dashed: standard approach,  omitted

Solid: our formulation,  included


iπΘ(rkl)
iπΘ(rkl)

Dots-Solid/LO: horizontal, the correct Log 
dependence is captured.

Dots-Dashed/LO: not horizontal, the 
correct Log dependence is lost.

with n > 2. In this section we show numerical results about this aspect, for 2 ! n partonic

processes with n = 3, 4. Again, we select representative processes for which the relevant

plots are displayed in Fig. 3. Each plot shows the dependence on s of several quantities,

and the layout is very similar to the one of the upper plots of Figs. 1 and 2. Here, the

LA always includes the SSCs!rkl terms,16 but we distinguish the case in which the terms

proportional to i⇡⇥(rkl) in eqs. (2.23)-(2.25) are excluded, as in the original DP algorithm

in Ref. [39], or retained. The former are displayed as dashed lines (i⇡⇥(rkl) OFF) and the

latter as solid lines (i⇡⇥(rkl) ON). For each leading helicity configuration, we also show

in the second and third inset the di↵erence between the LA and the exact result both

normalised to the LO, respectively with and without taking into account the imaginary

component.

In order to produce the plots, scanning in
p
s, we have performed a procedure similar

to the one explained in the previous section for the upper plots in Figs. 1 and 2. The only

di↵erence here is the starting point. For 2 ! n partonic processes with n > 2, besides

s, there is more than only one independent kinematic invariant that can be built via the

external momenta. In order to avoid pathological configurations with an |rkl| ' M
2
W
, we

randomly generate the first set of external momenta setting
p
s = 104 GeV and requiring

|rkl|

s
>

1

8
8 rkl . (6.3)

We remind the reader, as already explained in footnote 1, that eq. (6.3) is a condition that

can be satisfied for 2 ! 3 or 2 ! 4 processes, but not in general for 2 ! n, for which this

lower bound has to be lowered more and more increasing the value of n, further departing

from the condition of eq. (2.4).

Looking at Fig. 3, it is manifest how the case including terms proportional to i⇡⇥(rkl)

correctly catches the LA, while the other one does not; perfectly horizontal lines are present

in the second inset, while in the third inset a dependence on s is clearly visible. For some

of the processes considered, such as dd̄ ! Zdd̄, this dependence seems to cancel out for

the sum over the di↵erent helicity configurations. In large part this is correct, but a small

dependence is still present and it is simply not visible from the plot. We in general see this

feature also for individual helicity configurations, namely the i⇡⇥(rkl) is often formally

relevant but sometimes the numerical e↵ect is very small. For other processes, such as

e
+
e
�

! e
+
e
�
µ
+
µ
� or ud ! Zud, even for the helicity-summed result the lack of the

terms proportional to i⇡⇥(rkl) leads to sizeable numerical e↵ects.

In order to provide a more quantitative statement, we list in Tab. 1 the results of

the fit of (Virt-SDK)/LO for each leading-helicity configuration (and their sum) of the

process dd̄ ! Zdd̄. We have used again the method of least squares and the functional

form of eq. (6.2). As can be seen in the third column of Tab. 1, all helicities exhibit a

non-vanishing slope when the terms proportional to i⇡⇥(rkl) are turned o↵. Notably, as

anticipated before, this happens also for the sum over the helicities, which for this particular

process and kinematic configuration (condition (6.3)) leads to a cumulative error of 2.6% in

the LA for every factor of 10 in increase of the energy. The error is process dependent and

16For brevity, in this section we will write in the plots only SDK and not SDK, s ! rkl ON as in Sec. 6.2.

– 33 –
28



Moving from IR-divergent virtual 
contributions to physical cross 

sections

The QED part is IR divergent, regardless if it is regularised in DR 
of with a fictitious  mass for the photon.λ

29



Cross-sections: our approach.
FOR WHAT WILL EW SUDAKOV BE USEFUL?
For providing a very good approximation of NLO EW in the high-energy limit. 


HOW SHOULD ONE PERFORM THE CALCULATION IN THE HIGH-ENERGY LIMIT?
Photons have to be always clustered with massless charged particle for IR-safety reasons. But from 
an experimental point of view, at high energy also clustering tops and W bosons with photons is 
very reasonable, either if you imagine to tag heavy object directly or via their massless decay products.

The QED Logs, involving  and  (or ), cancel against their real-emission 
counterparts and PDF counterterms. The only one surviving are those from tops in 
vacuum polarisation for external (not tagged) photons, both in the initial and final state:

s λ2 Q2

SDKweak
Almost all the contributions of QED are removed (e.g. , 

), but NOT in the parameter renormalisation .

The same applies for the case QCD contributions to NLO EW (  multiplying the 
LO,2).

CEW(k) → CEW(k) − Q2
k

Q2
k = 0 δPR

δQCD
LA
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Cross-sections: standard approach in the literature

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)

9

configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The logarithms between  and the infrared scale are simply removed. Equivalently in the 
case of DR, logarithms involving  and the IR regulator .


Easy, but not very well motivated.

We will denote in the following this approach as .

M2
W

M2
W Q2

SDK0

SDK0
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SOME EXAMPLES AT 100 TeV
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 production at 100 TeVe+e−

Orange: NLO EW, (dotted: NLO EW no  PDF)

Green = , Red = 

Dashed: standard approach for amplitudes.

Solid: our formulation (more angular information)
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Reference Prediction:

Red-solid line

We use the PDF set NNPDF3.1 [132, 133] in particular the NNPDF31_nlo_as_0118_luxqed

distributions, which include NLO QED evolution and especially a photon density following

the LUXqed parameterisation [134, 135]. The renormalisation (µR) and factorisation (µF )

scales are both set equal to the partonic center-of-mass energy
p
s. This set-up is common

with all the other processes discussed in this section.

In the Drell-Yan simulation the following cuts are imposed on the dressed leptons:

pT (`
±) > 200 GeV , |⌘(`±)| < 2.5 , m(`+, `�) > 400 GeV , �R(`+, `�) > 0.5 .

(7.2)

On the one hand, these cuts are imposed in order to resemble realistic experimental cuts for

high-energy objects. On the other hand, they avoid additional logarithmic enhancements

from collinear splittings appearing in the real radiation processes or even at the Born.

In Fig. 5 we show di↵erential distributions for the transverse momentum of the electron,

pT (`�), for the transverse momentum of the leading (trailing) lepton, pT (`1) (pT (`2)), and

for the dilepton invariant mass m(`+, `�).

The layout of each plot in Fig. 5, and in general of each plot in this section21, is

the following. In the main panel we show the di↵erential distribution at LO (solid blue

line) and NLO EW (solid orange line) accuracy, where the exact O(↵) corrections are

taken into account. If the NLO EW prediction turns negative, meaning that NLO EW

corrections are negative and larger than the LO in absolute value, the curve corresponds

to its absolute value and is drawn as dashed. In the first inset we show the relative

impact of EW corrections, �X ⌘ X/LO� 1, in di↵erent approximations. The solid orange

line corresponds to the one in the main panel with the same style, i.e. the exact O(↵)

corrections (NLO EW), and the dotted orange line corresponds to the same case where the

photon PDF has been set equal to zero (NLO EW, no �). The other curves correspond

to results in LA, with di↵erent assumptions. First, the solid curves include the SSCs!rkl

contribution (SDKX , s ! rkl), while the dashed ones do not (SDKX). Second, the green

lines are obtained by simply omitting the QED and IR-sensitive terms, which are dubbed

as “em” in the DP algorithm. This is analogous to the approach of e.g. Refs. [79, 91]

and dubbed here as SDK0. The red lines are instead obtained by completely removing

the QED contribution, namely, following the procedure described in Sec. 4.1, the SDKweak

approach. Both the SDK0 and SDKweak predictions, similarly to the NLO EW ones in

this section, include also the LO contribution. Needless to say, the closest a line is to

the solid orange one, the better is the approximation of the exact NLO EW corrections.

Therefore, in order to better judge this characteristic, in the second inset we zoom on the

lines by simply plotting for each line in the first inset the di↵erence with the solid orange

one. Clearly, the reference prediction in LA is the solid red line, which both includes the

SSCs!rkl contribution and is obtained via the SDKweak approach.

dressed lepton pair can originate from a configuration where the bare leptons have m(`+bare, `
�
bare) ' MZ and

one of them is recombined with a hard photon, leading to m(`+, `�) � MZ and therefore passing the cuts.

This configuration is not associated to any enhancement and therefore very rare, but in the on-shell scheme

it leads to the evaluation of a resonant Z propagator with zero width and therefore it is inconsistent.
21An important di↵erence is present for Figs. 7 and 8 and explained later in the text.
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captures the NLO EW prediction.

Solid and dashed very similar.

Photon PDF cannot be ignored.

SDKweak
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ZZZ production at 100 TeV

Orange: NLO EW, (dotted: NLO EW no  PDF)

Green = , Red = 

Dashed: standard approach for amplitudes.

Solid: our formulation (more angular information)
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Reference Prediction:
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 and approaches return 
very similar results (neutral final state).

Only the solid lines, having more angular 
information, correctly capture NLO EW.

SDKweak SDK0

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the
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Sometimes things get more 
complicated

some preliminary considerations 
about WZ
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WZ

NLO EW:

Sudakov logs are present, but the γq initial-state contribution is huge 
and overcompensates them.


dσ
uW−

γ →Zd
LT , involving a t-channel Feynman diagram with a gauge boson exchange, are about

one to two orders of magnitude larger than dσuγ→Zu
L at pZT ≈ 700 GeV. Qualitatively, this can

be understood as follows. Considering the ratio of the t-channel Feynman diagram with a gauge
boson exchange in uγ → W+d to the t-channel Feynman diagram with a quark exchange in
uγ → Zu, we get the factor Eγ/|q| with q2 ≈ −2E2

γ(1−cos θ) from dimensional analysis. At the
amplitude squared level, the factor becomes 1/[2(1−cos θ)], which is about 8 for pT = 700 GeV
and Eγ = 2 TeV. Here we are assuming that the dominant contribution comes from the region
of 4 TeV of partonic center of mass energy. This is reasonable because, compared to uγ → Zu,
the Feynman parameters xi (i = 1, 2) (for dominant contribution) in uγ → W+d are expected
to be larger due to the exchange of a t-channel gauge boson. Some further enhancement from
the couplings can be possible as we have seen in the previous QCD results. Numerically, we
get 37.3% (38%), 69.5% (58%) for leading-logarithmic approximation (full calculation) for pW

+

T

and pW
−

T distributions, respectively, at pT = 700 GeV. For pZT distributions, we get 58.8% (32%)
and 100% (48%) for leading-logarithmic approximation (full calculation) for W+Z and W−Z,
respectively.
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Figure 10: Same as Fig. 9 but for EW corrections (in %).

The invariant mass distributions are similar inW+Z andW−Z channels. They are displayed
in Fig. 11. The QCD corrections, displayed in middle panels, are of the order of +60% (with
some fluctuations up to +70% near the threshold). As displayed in lower panels of Fig. 11 the
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WZ production at 100 TeV

Orange: NLO EW, (dotted: NLO EW no  PDF)

Green = , Red = 

Dashed: standard approach for amplitudes.

Solid: our formulation (more angular information)
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The Sudakov approx imat ion cannot 
approximate large logs from the opening of 
new channels. The fair comparison is with 
NLO EW no  PDF. 

Only the approach correct ly 
captures the NLO EW prediction.

Only the solid lines, having more angular 
information, correctly capture NLO EW.
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SDKweak

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the
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Figure 8: Same as Fig. 7, but for W+
W

+
W

� hadroproduction at 100 TeV.

or �(q� ! W
+
Zq

0) / �(q� ! Zq) ⇥ L(p2
T
(Z),M2

W
)) and their impact can depend on

how the di↵erent particles are clustered among each other (for instance V -bosons versus

V -tagged jet). These contributions cannot be taken into account via the DP algorithm.

The LA and in particular the DP algorithm as implemented in MadGraph5 aMC@NLO

allow for a fast and, as shown in the previous examples, very reliable approximation of

fixed-order exact NLO EW corrections. On the other hand, it cannot substitute the exact

calculation. LA can be used as a starting point for improving the fixed-order NLO EW,

by e.g. resumming the large Sudakov logarithms or alternatively for performing fast sim-

ulations with MadGraph5 aMC@NLO including the EW dominant e↵ects at high-energy.

The latter option, however, should be always cross-checked with an exact calculation before

being used for phenomenological predictions.
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WWW production at 100 TeV

Similar to the WZ case. The Red-solid line is always superior, but at different levels.



OUTLOOK rather than CONCLUSION

Why did we automate Sudakov in aMG5?

- Fast evaluation of leading one-loop NLO EW corrections to amplitudes at high 
energies.


- Fast evaluation of leading NLO EW corrections at high energies for physical 
observables.


- Combination of leading NLO EW corrections at high energies with QCD+shower. 
(reweighting?)


- Combination in FxFx (merging at NLO) with recent advancements for weak radiation.


- Application to both hadron and lepton colliders. Combination with new W PDF 
implementation.


- Automation of matching of NLO EW and resummed EW LL


- Extending UFO information, generalisation to BSM case.


- DM production/annihilation including EW Sudakov effects (MadDM).

- Can we use this approach with SMEFT? ( )


- …..

s < Λ2
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Automation of NLO corrections in Madgraph5_aMC@NLO
What do we mean with automation of EW corrections?

generate process [QCD]

output process_QCD


generate process [QCD EW]

output process_QCD_EW


The possibility of calculating QCD and EW corrections for SM processes 
(matched to shower effects) with a process-independent approach.

- NNLO QCD complete automation is out of our theoretical capabilities at the 
moment.


- NLO EW and NNLO QCD corrections are of the same order (          ), but 
NLO EW corrections can be automated. Moreover effects such as  
Sudakov logarithms or photon FSR can enhance their size.


     

of their hierarchy in terms of coupling constants. Secondly, weak contributions due to the

emission of potentially resolvable massive EW vector bosons need to be taken into account,

at least when one is not able to discard them in the context of a fully realistic analysis at

the level of final states. We have shown that, in the case of tt̄H inclusive production, these

processes may in fact not be entirely negligible in precision phenomenology studies.

We have compared the O(α2
Sα

2) predictions with those of O(α3
Sα), which constitute

the dominant (in terms of coupling hierarchy) contribution to NLO effects. We have found

that such a hierarchy, established a priori on the basis of the coupling-constant behaviour, is

amply respected at the level of fully-inclusive cross sections, for which the scale uncertainty

of the latter contribution is significantly larger than the whole O(α2
Sα

2) result. This picture

does change, however, when one emphasises the role of phase-space regions characterised by

some large scale (typically related to a high-pT configuration), which can be done by either

looking directly at the relevant kinematics, or at the inclusive level by applying suitable

cuts; both options have been considered here. The main conclusion is that, in these regions,

effects of weak origin play an important role, and that O(α2
Sα

2) results may be numerically

of the same order as theO(α3
Sα) ones. Therefore, tt̄H production appears to follow the same

pattern as other processes, where Sudakov logarithms can induce significant distortions of

spectra. This implies that the computation of weak contributions is a necessary ingredient

for precision phenomenology at large transverse momenta.
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dσug→W+Zd = cuWZdσ
ug→Zu
L

α

2π
log2

[

(pZT )
2

M2
W

]

,

dσdg→W−Zu = cdWZdσ
dg→Zd
L

α

2π
log2

[

(pZT )
2

M2
W

]

, (16)

for W+Z and W−Z production, respectively. This result can be obtained from Eqs. (13,15) by
replacing MZ with MW . This explains why the corrections for the pZT distributions are a little
bit larger than the corresponding pW

±

T ones. We observe that Eq. (16) differs from the result
of Ref. [14]. Numerically, we get ∆Kqg = 12.61 (6) and 17.22 (7.60) for leading-logarithmic
approximation (full calculation) for pW

+

T and pW
−

T distributions, respectively, at pT = 700 GeV.
For pZT distributions, we get ∆Kqg = 14.22 (6.30) and 19.42 (9.00) for leading-logarithmic
approximation (full calculation) for W+Z and W−Z, respectively.
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Figure 9: W and Z transverse momentum pT (in TeV) distributions of the NLO QCD corrections
(using ∆K) to pp → W+Z (upper left and right respectively) and pp → W−Z (lower left and right
respectively) cross sections at the LHC, calculated with MRST2004QED PDF set and with the input
parameters described in Section 3.1.

As for the EW effects, the NLO corrections for the transverse momentum distributions
are shown in Fig. 10. In both channels and for both transverse momenta the effect of the

12

photon radiated processes is negligible. Comparing to the ZZ case, we observe that the virtual
correction is significantly less negative. This suggests that there are more cancellations between
negative double-logarithm and positive single-logarithm corrections in the W±Z cases. More
striking is the difference in the photon-quark induced corrections, it is +60% for the pW

−

T
distribution, while only +0.3% for the ZZ case, at 700 GeV. The difference between W+Z and
W−Z channels is also clearly visible: in the upper panels the photon-quark induced processes
(in dotted dashed blue) in the W+Z channel compensate nearly exactly the effect of the virtual
corrections (in dotted red) reducing the total EW corrections to less than ∼ +10% on the whole
transverse momentum range both for the W and Z bosons, while in the case of W−Z process
the photon-quark induced corrections are larger, driving the EW corrections to ∼ +30% for
pW

−

T ∼ 700 GeV and ∼ +20% for pZT ∼ 700 GeV. In both channels the difference with the
ZZ channel is much more enhanced than in the QCD case, and the key difference is that the
W± can couple to the photon in the EW case. This introduces a new Feynman diagram with
t-channel W± exchange in the 2 → 2 process and a new possibility of radiating a soft W±

from the initial-state photon. A detailed calculation is presented in the Appendix with all the
intermediate steps. To explain the pZT distribution we have to consider soft W± radiation as in
the QCD case. For pZT # MW we get

dσuγ→W+Zd =

[

1

2
a2W (1− au +

a2u
2
)dσuγ→Zu

L +
1

4
cot2 θWdσuγ→W+d

L +
1

4
dσ

uW−
γ →Zd
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]

α

2π
log2

[

(pZT )
2
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W

]

,

dσdγ→W−Zu =

[

1

2
a2W (1− ad +

a2d
2
) dσdγ→Zd

L +
1

4
cot2 θWdσdγ→W−u

L +
1

4
dσ

dW+
γ →Zu

LT

]

α

2π
log2

[

(pZT )
2

M2
W

]

,

(17)

where W±
γ means that the photon PDF must be used and

au = 1−
QdcL,d
QucL,u

, ad = 1−
QucL,u
QdcL,d

. (18)

In order to obtain the results in Eq. (17) we have used the following identities, which are true
in the high-energy limit,

cot θWAuγ→W+d
L −AuW−→Zd

LT = aWauAuγ→Zu
L ,

cot θWAdγ→W−u
L −AdW+→Zu

LT = −aW adAdγ→Zd
L , (19)

where all the gauge bosons are transverse. This is because the longitudinal-mode contributions
to Eq. (17) vanish in the high-energy limit pT # MZ . Therefore, all the gauge bosons are
transverse in all leading-logarithmic results presented in this paper. More details are given in
the Appendix. For pW

±

T # MZ with soft Z radiation we have

dσuγ→W+Zd =
c2L,uc

u
WZ

a2W
dσuγ→W+d

L

α

2π
log2

[

(pW
+

T )2

M2
Z

]

,

dσdγ→W−Zu =
c2L,dc

d
WZ

a2W
dσdγ→W−u

L

α

2π
log2

[

(pW
−

T )2

M2
Z

]

. (20)

The main reason why the photon-quark induced corrections are much larger in the WZ

case than in the ZZ case is because the cross sections dσdγ→W−u
L , dσuγ→W+d

L , dσ
dW+

γ →Zu
LT and

13- The large growth at high pt in NLO EW has similar origin of the case of 
NLO QCD corrections: giant K-factors Frixione et al. ’92.


- The photon couples to the W, originating new t-channel configurations 
that enhance the relative size of photon-quark contributions in NLO EW.

NLO QCD corrections do not exhibit similar features.

See also Baglio et al ‘13

Zj + 

soft and collinear W
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Massless photons and light quarks

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
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1

4s2w

(

(1 + δκR)
m2

fσ

M2
W
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m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
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3

2
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1

8s2w

(

(1 + δκR)
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fσ
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f−σ
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lem(m2

fσ
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}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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Massless photons and light quarks

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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be non-diagonal. We will return to this point discussing the implementation in Mad-

Graph5 aMC@NLO. Using DR the electromagnetic DL reads

L
em(s,Q2

,m
2
k
) ⌘ 2l(s) log

✓
M

2
W

Q2

◆
+ L(M2

W , Q
2)� L

reg(m2
k
, Q

2) , (2.20)

with

L
reg(m2

k
, Q

2) ⌘

(
0 if m2

k
= 0 ,

L(m2
k
, Q

2) otherwise .
(2.21)

2.4 SSC: Subleading soft-collinear contributions

Unlike the LSC terms, the SSC ones remain a sum over pairs of external legs of the form

�
SSC

M
i1...in =

nX

k=1

X

l<k

X

Va=A,Z,W±

�
Va,SSC
i
0
kiki

0
lil
(k, l)M

i1...i
0
k...i

0
l...in

0 . (2.22)

This part is the one with the largest di↵erences w.r.t. Ref. [39]. The exchange of soft

neutral gauge bosons contributes with

�
A,SSC
i
0
kiki

0
lil
(k, l) =


2
�
l(s) + l(M2

W , Q
2)
�✓

log
|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
W )

�
I
A

i
0
kik

(k)IA
i
0
lil
(l),

�
Z,SSC
i
0
kiki

0
lil
(k, l) =


2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
Z)

�
I
Z

i
0
kik

(k)IZ
i
0
lil
(l), (2.23)

and charged gauge bosons yields

�
W

±
,SSC

i
0
kiki

0
lil

(k, l) =


2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
W )

�
I
±
i
0
kik

(k)I⌥
i
0
lil
(l), (2.24)

The quantity �s!rkl(rkl,M2) is set equal to zero when the condition (2.4) is assumed and

the LA is applied in a strict sense, as done in Ref. [39]. Taking instead into account the

fact that s � rkl � M
2, this quantity reads

�s!rkl(rkl,M
2) ⌘ L(|rkl|, s) + 2l(M2

W ,M
2) log

|rkl|

s
� 2i⇡⇥(rkl)l(|rkl|, s) , (2.25)

and precisely corresponds to the SSCs!rkl logarithms of eq. (2.17).

The quantities I
A, IZ and I

± are the couplings with respectively the photon, the Z

boson and the W
± boson, where we have omitted the indices i

0
j
ij . While I

A is always

diagonal in these indices, IZ can be non-diagonal and I
±(k) is always o↵ diagonal. The

impact of the new imaginary terms proportional to i⇡⇥(rkl) on results obtained with the

DP algorithm is directly connected to the aforementioned o↵-diagonal structures. Indeed

the virtual contribution to NLO EW corrections involves terms of the form 2<(M0�M
⇤),

where

2<
⇣
M

i1...in
0 (�Mi1...in)⇤

⌘
� 2<

⇣
M

i1...in
0

⇣
�
Va,SSC
i
0
kiki

0
lil
(k, l)M

i1...i
0
k...i

0
l...in

0

⌘⇤⌘
. (2.26)

If the I
Va entering eq. (2.26) via �

Va,SSC is diagonal or both M
i1...in
0 and M

i1...i
0
k...i

0
l...in

0 are

real, like in 2 ! 2 processes, the contributions of imaginary terms proportional to i⇡⇥(rkl)

– 12 –

vanish, otherwise they formally contribute. It is also interesting to note that with DR

and massless photons, setting Q
2 = s the entire �

A,SSC contribution vanishes if we also

set �s!rkl(rkl,M2
W
) = 0. This can be seen from the definition of �A,SSC in eq. (2.23).

This argument will also be recalled in Sec. 3.1, where the QCD contribution to NLO EW

corrections to squared matrix-element is discussed.

2.5 C: Collinear and soft single logarithms

In this section we provide the results obtained in Ref. [39], adapting them for the case

with massless light-fermions and photons. The formula for the collinear and soft single

logarithms can be written as a sum over the external particles and polarisations,

�
C
M

i1...in =
nX

k=1

�
C
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.27)

with �
C
i
0
kik

(k) that depends on the external particle and polarisation 'ik . We provide the

results in the following. The expressions for all the new terms introduced in the formulas

can be found in Ref. [39].

Chiral fermions

Considering fermions f
� with chirality  = R,L and isospin indices � = ±, the result is

�
C
f�f�0 (f

) = ���0

("
3

2
C

ew
f �

1

8s2w

 
(1 + �R)

m
2
f�

M
2
W

+ �L

m
2
f��

M
2
W

!#
l(s) +Q

2
f�
l
em(m2

f�
)

)
,

(2.28)

where the pure electromagnetic logarithms reads

l
em(m2

f
) ⌘

1

2
l
reg(M2

W ,m
2
f
) + l(M2

W , Q
2) , (2.29)

with

l
reg(M2

W ,m
2
f
) ⌘

(
l(M2

W
, Q

2) if m2
f
= 0 ,

l(M2
W
,m

2
f
) otherwise .

(2.30)

Transverse charged gauge bosons W

The result is

�
C
W�W�0 (VT) = ���0


1

2
b
ew
W l(s) +Q

2
W l

em(M2
W )

�
, (2.31)

where b
ew
W

is a coe�cient of the �-function.

Transverse neutral gauge bosons A,Z

The results for symmetric and antisymmetric parts are expressed in terms of the coe�cients

b
ew
NN 0 of the �-function. The result is

�
C
N 0N (VT) =

1

2
[EN 0Nb

ew
AZ + b

ew
N 0N ] l(s) +

1

2
�NA�N 0A�Z

em
AA. (2.32)
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Q is the IR regularisation scale in DR and the expressions have been obtained simply via the 
following substitutions in the expressions.


l(M2
H
,M

2
W
), similarly to the quantities log (|rkl|/s) and log2 (|rkl|/s), are neglected when

they do not multiply the term l(s).

In Ref. [39] all the quantities denoted as electromagnetic (“em”) depend on mf 6=t and

�, which here are considered exactly equal to zero,

mf 6=t = � = 0 . (2.7)

The consequence of (2.7) is that DR becomes necessary. In D = 4 � 2✏ dimensions, elec-

tromagnetic logarithms transform into 1/✏ poles plus finite terms and logarithms involving

the IR-regularisation scale Q. In this context we are not interested in the structure of the

IR poles, which for NLO EW corrections is discussed, e.g., in Refs. [16, 17, 24, 95]; we

are interested only to the logarithmic dependence of the finite part. This can be simply

derived via the substitutions

log(�2) ! log(Q2) , log(m2
f 6=t

) ! log(Q2) , (2.8)

in the expressions of Ref. [39].

We want to comment on the dependence on Q, the IR-regularisation scale, which is

introduced here and it is not present in the original DP algorithm. The derivation of the

formulas in Ref. [39] depends on the assumption that µ
2 = s, but therein µ is the UV-

regularisation scale since all the IR divergences are regularised via mf 6=t and �. However,

similarly to this work, therein formulas have been derived assuming an on-shell renormal-

isation scheme, such as the ↵(MZ) or Gµ ones. With such a renormalisation scheme, no

renormalisation-scale dependence is present for one-loop renormalised amplitudes, both

if exactly calculated or using the LA. Therefore, the DP algorithm, although derived as-

suming a specific value for µ (µ2 = s), returns results that do not depend on µ. The

substitution in (2.8), that we perform due to the condition (2.7), does not depend on the

condition (2.2). Moreover, it a↵ects only the regularisation of IR divergences and does not

concern the UV ones. Therefore, this substitution introduces the correct dependence on Q

even if a common regulator for UV and IR divergences (Q = µ) is used. Exceptions are

discussed in Sec. 3.

Before providing the expressions necessary for automating one-loop EW Sudakov loga-

rithms, we introduce further conventions and notations according to Ref. [39]. Amplitudes

are assumed with n arbitrary external particles and all momenta pk incoming. Needless

to say, any 2 ! n � 2 amplitude can be rewritten into a n ! 0 amplitude via crossing

symmetry. Processes are denoted as

'i1(p1) . . .'in(pn) ! 0 , (2.9)

where the (anti)particles 'ik are the components of the various multiplets ' of the SM:

• f

� and f̄


� : chiral fermions and antifermions, with chiralities  = R,L and the isospin

indices � = ±,

• Va = A,Z,W
±: gauge bosons transversely (T) or longitudinally (L) polarised. Neu-

tral gauge bosons are also denoted as N = A,Z,

– 8 –



Organisation of the logs in the algorithm

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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(
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originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The full EW is present between  and , while only QED is present between  and .s M2
W M2

W λ2

So the QED contribution is split between the intervals . But the division at 
 is simply determined by convenience, in parallel with the weak case. In this case  is 

just a technical parameter and not a physical quantity. 

(s, M2
W) + (M2

W, λ2)
M2

W M2
W
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Interference tree-level and one-loop

In the following section we provide the necessary ingredients for taking into account

single and double-logarithmic enhanced contribution of QCD origin in the computation of

⌃NLO2
, what is typically dubbed in the literature as “NLO EW corrections”. The case of

the Complete-NLO, i.e. the complete set of ⌃NLOi
contributions, is left for future work.

In practice, what is discussed in this work is su�cient for both the case of ⌃NLO2
and

⌃NLOk+1
, with the latter never receiving contributions from “QCD loops”, as can be seen

from eq. (3.3).

The quantity �
EW
LA is what is calculated via the DP algorithm revisited in Sec. 2 and

summarised in eqs. (2.10)–(2.12). For the case ⌃NLO2
, or equivalently the case ⌃NLOk+1

, if

M0 is the amplitude that once squared leads to ⌃LO1
, or equivalently ⌃LOk

, then

�
EW
LA ⌘

2<(M0�M
⇤)

|M0|
2

. (3.5)

As we said, we leave the case of the Complete-NLO for future work. In that case also

eq. (3.5) would receive modifications since a generic ⌃LOi�1
term with 1 < i < k can itself

arise from the interference of amplitudes factorising di↵erent powers of ↵S and ↵.

3.1 Contributions from QCD loops

If ⌃LOi / ↵
n
S↵

m, since ⌃LOi+1 / ↵
n�1
S ↵

m+1 then ⌃LOi+1 originates from either a squared

amplitude |M̃0|
2 with

M̃0 / ↵
(n�1)/2
S ↵

(m+1)/2
, (3.6)

or an interference M̃0,1M̃
⇤
0,2 of two amplitudes M̃0,1 and M̃0,2 with

M̃0,1 / ↵
(n�1+j)/2
S ↵

(m+1�j)/2
, (3.7)

M̃0,2 / ↵
(n�1�j)/2
S ↵

(m+1+j)/2
. (3.8)

with j being an integer in the range 0 < j  min(n � 1,m + 1). Similarly to eqs. (2.10)–

(2.12), where starting from the amplitude M0 the logarithmic-enhanced EW corrections

are denoted as �M, we can denote the logarithmic-enhanced QCD corrections to M̃0 as

�M̃. This implies that

⌃LOi+1
/ |M̃0|

2 or ⌃LOi+1
/ 2<(M̃0,1M̃

⇤
0,2) , (3.9)

and respectively

⌃LOi+1
�
QCD
LA / 2<(M̃0�M̃

⇤) or ⌃LOi+1
�
QCD
LA / 2<(M̃0,1�M̃

⇤
2 + M̃0,2�M̃

⇤
1) . (3.10)

In principle, following the same steps of Sec. 2, one could derive a general algorithm

for obtaining �M̃ starting form a generic M̃0. Indeed, besides the case of non-abelian

gluon vertices, the DL and SL logarithms can be identified by looking at the purely QED

part of the expressions of Sec. 2. In practice, this would lead to non-trivial terms involving

colour-linked amplitudes, which are not per se problematic, but still can be avoided with

two simple assumptions on the value of Q2 and �s!rkl(rkl,M2).

– 17 –

As shown, the two amplitudes have different 
external states.

As shown, the two amplitudes have different external states.

The same STR (Simplified Treatment of Resonances) techniques used for 
subtractions of resonances in MSSM calculations. Frixione et al. ’19

However, in this case STR are applied:


- to the kinematic mass of a single particle,

- also in the initial state,

- once or twice per amplitude,

- in the interference only for one of the two amplitudes

Derivatives implemented numerically, point by point. 

very simple. We start with the original initial-state momenta ki, with i = 1, 2, where the

one with i = � is going to have a new mass. Since s must be conserved and we want the

new momenta k̄i collinear to the beam pipe, in the partonic centre-of-mass frame one has

to simply derive the new quantity |k̄�,z| = |k̄3��,z| enforcing momentum conservation and

on-shell conditions.

We conclude by commenting on the fact that, when masses are modified for both

an initial-state and a final-state particle, the procedure can again be performed iteratively.

However, when the default option B is used for the final-state case, since it assumes massless

initial-state momenta, the case of a new mass in the final state should be considered first,

and only afterwards one should consider the initial-state one.

Before moving to the next section we want to clarify that all this procedure would

be unnecessary if an analytical calculation were performed and all the mass-suppressed

term were discarded. This is on the other hand not possible in an automated approach.

The procedure outlined here leads to a correct evaluation of all the terms that are not

mass suppressed. Indeed, all the modifications of the momenta and subsequent reshu✏ing

operations involve only scales connected to the mass of the SM particles. The di↵erences in

the kinematics before and after the procedure outlined in this section are mass suppressed

themselves, leading to smaller and smaller e↵ects when the energy inrceases. Ambiguities

related to the choice of a specific reshu✏ing technique and to the order in which the

reshu✏ing is performed are also mass suppressed.

5.3 Derivative of the amplitudes

As can be seen in eqs. (2.40) and (3.11), the derivatives of amplitudes with respect to

part of the input parameters have to be evaluated in order to compute the logarithmic

contributions induced by the parameter renormalisation. Although one may in principle

use dedicated Feynman rules, such as those used for generating UV counter-terms in an

NLO computation, we have opted to perform the derivatives via numerical methods. In

other words, for each phase-space point, we evaluate the quantity

�M

�x

����
x=x̄

⌘
(M|x=x̄(1+�x) �M|x=x̄(1��x))

2�x
, (5.15)

where x is any of the variables for which the derivative has to be performed (MW ,MZ ,

etc.), x̄ is its numerical value when the amplitudes are evaluated and �x is a small value,

which has been set to �x = 10�5 for the results presented in this work. The same procedure

is done for M̃ in eq. (3.11).

We have checked that this procedure has a mild impact on the speed of the code and

the choice �x = 10�5 is excellent in terms of both stability and precision. The use of the

numerical derivatives allows also to easily adapt the calculation of PR terms for possible

BSM scenarios, where additional particles and couplings would be present. Moreover, at

variance with what has been done in the recent automation [91] in the Sherpa framework,

as all the other type of DL and SL logarithms the SL from PR terms are calculated exactly

at O(↵), without including spurious terms from higher orders in the ↵ expansion. This

– 26 –

Not the fastest approach, but very flexible.

In the SHERPA automation, 
higher-order terms of the 
form 

are also present.

l2(s) = α2 log(s/M2
W)

are related to the top-quark Yukawa coupling and to the scalar self coupling, respectively.

All the �’s are the logarithmic part of the renormalisation counter-terms of the corre-

sponding dimensionless quantities. In the �’s, regardless of the value of Q chosen for

the regularising the IR divergences in the other contributions (LSC, SSC, C), the UV

regularisation-scale µ must be set as µ2 = s. Indeed, although renormalised amplitudes in

an on-shell scheme do not depend on the value of the unphysical UV-regularisation scale

µ, the DP algorithm has been derived assuming µ
2 = s. Therefore, in order to preserve

the cancellation of the µ dependence related to the UV poles, in the logarithmic part of

the UV counter-terms it is necessary that µ2 = s.

Here, we rearrange the formula in eq. (2.38) for practical purposes related to the

implementation in MadGraph5 aMC@NLO, discussed in Sec. 5, but the results are fully

equivalent with those of Ref. [39]. In practice we rearrange it into

�
PR

M =

✓
�M0

�↵
�↵+

�M0

�M
2
W

�M
2
W +

�M0

�M
2
Z

�M
2
Z +

�M0

�mt

�mt +
�M0

�ntad
�ntad +

�M0

�MH

�MH

◆ ���
µ2=s

.

(2.40)

It is worth to recall that the renormalisation of masses in propagators or in couplings

with mass dimension is not relevant, because those contribute only to mass-suppressed

amplitudes. The parameter ntad is a technical parameter that has the only purpose of

keeping track of the appearances of the tadpole counter-term. In practice what we do is

to modify Feynman rules for three-scalar and four-scalar vertices by rescaling their value

by the parameter ntad, which is then set equal to one in the numerical evaluation.

We use the following formulas:

�M
2
W

M
2
W

= � [bewW � 4Cew
� ] l(µ2)�

N
t

C

2s2w

m
2
t

M
2
W

l(µ2),

�M
2
Z

M
2
Z

= � [bewZZ � 4Cew
� ] l(µ2)�

N
t

C

2s2w

m
2
t

M
2
W

l(µ2), (2.41)

and

�↵ =
2�Ze

4⇡
=

1

4⇡

�
�b

ew
AAl(µ

2) + 2�Zem
e

�
, (2.42)

where the purely electromagnetic part reads

�Z
em
e ⌘

(
�

1
2�Z

em
AA

= 2
3

P
f,i,� 6=t

N
f

CQ
2
f�
l(M2

W
, Q

2) in the ↵(0) scheme ,

0 in the Gµ or ↵(MZ) scheme.
(2.43)

In this work, all the results are presented by adopting the Gµ scheme, where in the place

of ↵ the input parameter is Gµ, which is related to ↵ via the tree-level relation Gµ =

⇡↵/(
p
2M2

Z
c
2
ws

2
w). This translates into the substitution

�M0

�↵
�↵ !

�M0

�Gµ

�Gµ with �Gµ =
�Gµ

�↵
�↵+

�Gµ

�M
2
Z

�M
2
Z +

�Gµ

�M
2
W

�M
2
W , (2.44)

in eq. (2.40).
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QCD in the NLO EW corrections

with the contribution from the tadpole renormalisation reading

�t = �T =
1

eswMW


�
3

2
M

2
W

✓
M

2
Z

c2w
+ 2M2

W

◆

�
M

2
H

4
(2M2

W +M
2
Z + 3M2

H) + 2N t

Cm
4
t

�
l(µ2) . (2.47)

3 Sudakov logarithms and NLO EW corrections

In the previous section we have revisited the DP algorithm, which allows the calculation

of electroweak DL and SL in LA for virtual scattering amplitudes. On the other hand,

for collider results and in general for the calculation of physical observables, the relevant

quantities are amplitudes that are either squared or interfered among them. In particular

in this work our final goal is the NLO EW corrections to cross sections.

For any di↵erential or inclusive cross section ⌃, adopting the notation already used in

Refs. [12, 16, 17, 82, 97–104], the di↵erent contributions from the expansion in powers of

↵S and ↵ can be denoted as:

⌃LO(↵S,↵) = ⌃LO1
+ · · ·+ ⌃LOk

, (3.1)

⌃NLO(↵S,↵) = ⌃NLO1
+ · · ·+ ⌃NLOk+1

, (3.2)

with k being process dependent and k � 1.

Each ⌃LOi
denotes a specific ↵n

S↵
m perturbative order that can be present at LO, i.e.,

arising from tree-level diagrams only. On the contrary, each ⌃NLOi
denotes a specific NLO

perturbative order to which the interferences between di↵erent classes of tree-level and

one-loop diagrams can contribute. For a given process, the values of n and m vary for each

⌃LOi
, but the sum n+m is constant. Moreover, if ⌃LOi

/ ↵
n
S↵

m then ⌃LOi+1
/ ↵

n�1
S ↵

m+1,

⌃NLOi
/ ↵

n+1
S ↵

m and ⌃NLOi+1
/ ↵

n
S↵

m+1.

It easy to understand that if the perturbative order of each ⌃NLOi
is denoted as

O(⌃NLOi
) then

O(⌃NLOi
) = O(⌃LOi

)⇥ ↵S = O(⌃LOi�1
)⇥ ↵ . (3.3)

Equation (3.3) implies something that is very well known and, e.g., has been discussed

in details Ref. [82]. If ⌃NLOi
involves EW corrections (i > 1) and it is not the term with

the possibly highest ↵ power at NLO (i < k + 1), then both QCD and EW loops on top

of tree-level amplitudes can enter into the game. Even worse, this separation into “QCD

loops” and “EW loops” is artificial and especially cannot be rigorously defined. Since

one of the main features of our implementation of the DP algorithm is the possibility of

comparing the DL and SL terms in LA against the exact result for NLO EW corrections,

the contribution of such “QCD loops” cannot be ignored.

In LA, the contribution from one-loop corrections to the quantity ⌃NLOi
, denoted as

⌃virt
NLOi

can be written in the form

(⌃virt
NLOi

)
���
LA

= ⌃LOi�1
�
EW
LA + ⌃LOi

�
QCD
LA . (3.4)
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Also QCD leads to Sudakov logarithms in 
the virtual amplitude.

As already mentioned at the end of Sec. 2.4, if one setsQ2 = s and�s!rkl(rkl,M2) = 0,

as in the formal derivation of Ref. [39], then the SSC contribution from purely QED origin

vanishes. Similarly, simplifications in the rest of the expressions of Sec. 2 happen. Setting

Q
2 = s and �s!rkl(rkl,M2) = 0, these simplifications are present also for the case of QCD.

Especially, the SSC contribution vanishes also in the case of QCD corrections. As we will

see later in Sec. 4.1, these two assumptions are innocuous for what concerns �
QCD
LA in LA

when physical observables are considered.

With these two assumptions, if M̃0 / ↵
n↵S
S ↵

n↵ we can write

�M̃ ⌘ M̃0

"⇣
nt L

t(s) + n↵S l
↵S (µ2

R)� ng l
↵S (s)

⌘
+

�M̃0

�mt

(�mt)
QCD

#
, (3.11)

where nt and ng are the number of top quarks and gluons in the external legs, respectively.

The quantities Lt(s), l↵S (µ2) and (�mt)QCD are defined as

L
t(s) ⌘

CF

2

↵S

4⇡

✓
log2

s

m
2
t

+ log
s

m
2
t

◆
, (3.12)

l
↵S (µ2) ⌘

1

3

↵S

4⇡
log

µ
2

m
2
t

, (3.13)

(�mt)
QCD

⌘ �3CF

↵S

4⇡
log

s

m
2
t

, (3.14)

with CF = 4/3, and have a very di↵erent origin, as explained in the following.

The terms proportional to L
t(s) can be obtained by performing the substitution

Q
2
t

↵

4⇡
! CF

↵S

4⇡
, (3.15)

in the purely electromagnetic component of the LSC and C contributions for top quarks

(eqs. (2.19) and (2.28)). The reason why the top quark is special is that we are under-

standing the use of the five-flavour scheme. If other fermions f are treated as massive

(mf 6= 0), the corresponding logarithms with t ! f should be also taken into account.

This is true also for the remaining contributions discussed in this section. Indeed, for all

the other massless quarks, if one sets Q
2 = s and �s!rkl(rkl,M2) = 0, not only the SSC

but also the LSC and C contributions to �
QCD
LA vanish.

The term proportional to l↵S (s) can be derived from the diagonal C contribution for the

photon by applying the substitution (3.15). These logarithms are the virtual counterpart

of the quasi-collinear logarithms emerging from g ! tt̄ splittings. The term proportional

to l
↵S (µ2

R
) has instead a di↵erent origin; it is connected to the MS renormalisation of

↵S. While the renormalisation of the EW sector can be performed without introducing a

renormalisation-scale dependence, this is unavoidable in QCD. With five active flavours,

the logarithmic-enhanced part of the ↵S counter-term reads

�↵S

↵S

=
↵S

4⇡

h
�0 log

µ
2
R

Q2
+

2

3
log

µ
2
R

m
2
t

i
, (3.16)

where µR is the renormalisation scale and the quantity �0 = 11� 2
3nf is the leading term

of the QCD � function in the SM (nf = 6). We are assuming Q
2 = s and it is reasonable

to assume also µ
2
R
⇠ s, which let us to ignore the term proportional to log

µ
2
R

Q2 in eq. (3.11).
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Example ( ): QCD in NLO EW and scan in 2 → 4 s

Denner&Pozzorini algorithm works only with 
non mass-suppressed LO processes: we select 
only helicity configurations > 10^(-3) of the 
dominant one.

Dots: NLO EW (MadLoop). Lines = Sudakov.

Dashed:      omitted

Solid:  included


δQCD
LA

δQCD
LA

Dots-Solid/LO: horizontal, the correct Log 
dependence is captured.

Dots-Dashed/LO: not horizontal, the 
correct Log dependence is lost.

with n > 2. In this section we show numerical results about this aspect, for 2 ! n partonic

processes with n = 3, 4. Again, we select representative processes for which the relevant

plots are displayed in Fig. 3. Each plot shows the dependence on s of several quantities,

and the layout is very similar to the one of the upper plots of Figs. 1 and 2. Here, the

LA always includes the SSCs!rkl terms,16 but we distinguish the case in which the terms

proportional to i⇡⇥(rkl) in eqs. (2.23)-(2.25) are excluded, as in the original DP algorithm

in Ref. [39], or retained. The former are displayed as dashed lines (i⇡⇥(rkl) OFF) and the

latter as solid lines (i⇡⇥(rkl) ON). For each leading helicity configuration, we also show

in the second and third inset the di↵erence between the LA and the exact result both

normalised to the LO, respectively with and without taking into account the imaginary

component.

In order to produce the plots, scanning in
p
s, we have performed a procedure similar

to the one explained in the previous section for the upper plots in Figs. 1 and 2. The only

di↵erence here is the starting point. For 2 ! n partonic processes with n > 2, besides

s, there is more than only one independent kinematic invariant that can be built via the

external momenta. In order to avoid pathological configurations with an |rkl| ' M
2
W
, we

randomly generate the first set of external momenta setting
p
s = 104 GeV and requiring

|rkl|

s
>

1

8
8 rkl . (6.3)

We remind the reader, as already explained in footnote 1, that eq. (6.3) is a condition that

can be satisfied for 2 ! 3 or 2 ! 4 processes, but not in general for 2 ! n, for which this

lower bound has to be lowered more and more increasing the value of n, further departing

from the condition of eq. (2.4).

Looking at Fig. 3, it is manifest how the case including terms proportional to i⇡⇥(rkl)

correctly catches the LA, while the other one does not; perfectly horizontal lines are present

in the second inset, while in the third inset a dependence on s is clearly visible. For some

of the processes considered, such as dd̄ ! Zdd̄, this dependence seems to cancel out for

the sum over the di↵erent helicity configurations. In large part this is correct, but a small

dependence is still present and it is simply not visible from the plot. We in general see this

feature also for individual helicity configurations, namely the i⇡⇥(rkl) is often formally

relevant but sometimes the numerical e↵ect is very small. For other processes, such as

e
+
e
�

! e
+
e
�
µ
+
µ
� or ud ! Zud, even for the helicity-summed result the lack of the

terms proportional to i⇡⇥(rkl) leads to sizeable numerical e↵ects.

In order to provide a more quantitative statement, we list in Tab. 1 the results of

the fit of (Virt-SDK)/LO for each leading-helicity configuration (and their sum) of the

process dd̄ ! Zdd̄. We have used again the method of least squares and the functional

form of eq. (6.2). As can be seen in the third column of Tab. 1, all helicities exhibit a

non-vanishing slope when the terms proportional to i⇡⇥(rkl) are turned o↵. Notably, as

anticipated before, this happens also for the sum over the helicities, which for this particular

process and kinematic configuration (condition (6.3)) leads to a cumulative error of 2.6% in

the LA for every factor of 10 in increase of the energy. The error is process dependent and

16For brevity, in this section we will write in the plots only SDK and not SDK, s ! rkl ON as in Sec. 6.2.
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Example ( ): QCD in NLO EW and scan in 2 → 4 s
�
QCD
LA ON �

QCD
LA OFF

Helicity A B A B

summed (9.9± 8.4) · 10�4 (�2.7± 0.4) · 10�2 (�8.9± 1.2) · 10�1 (3.1± 0.6) · 100

1 : ����++ (2.7± 1.6) · 10�4 (�2.56± 0.08) · 10�2 (�2.9± 0.4) · 10�1 (9.9± 1.8) · 10�1

6 : ���++� (�5.5± 5.4) · 10�3 (6.6± 2.7) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.4) · 100

7 : ���+�+ (4.3± 6.7) · 10�4 (5.8± 0.3) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.3) · 100

10 : ��+�+� (6.5± 6.1) · 10�4 (5.3± 0.3) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.3) · 100

11 : ��+��+ (�5.9± 5.8) · 10�3 (8.2± 2.9) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.4) · 100

16 : ��++�� (5± 14) · 10�5 (3.53± 0.07) · 10�2 (�1.4± 0.2) · 10�1 (5.4± 0.9) · 10�1

17 : �+��++ (4.3± 6.3) · 10�4 (�4.6± 0.3) · 10�2 (�2.2± 0.3) · 10�1 (7.3± 1.4) · 10�1

22 : �+�++� (�5.5± 3.5) · 10�4 (�6.4± 0.2) · 10�2 (�2.3± 0.3) · 100 (8.1± 1.5) · 100

23 : �+�+�+ (1.2± 0.6) · 10�3 (�6.3± 0.3) · 10�2 (�1.9± 0.3) · 100 (6.9± 1.3) · 100

26 : �++�+� (1.2± 0.9) · 10�3 (�5.9± 0.4) · 10�2 (�2.3± 0.3) · 100 (8.2± 1.5) · 100

27 : �++��+ (�3.7± 5.0) · 10�4 (�8.1± 0.3) · 10�2 (�2.0± 0.3) · 100 (7.0± 1.3) · 100

32 : �+++�� (3.1± 3.1) · 10�4 (2.7± 0.2) · 10�2 (�1.1± 0.1) · 10�1 (4.1± 0.6) · 10�1

33 : +���++ (1.5± 1.2) · 10�3 (�4.5± 0.6) · 10�2 (�2.2± 0.3) · 10�1 (7.3± 1.4) · 10�1

38 : +��++� (1.4± 1.0) · 10�3 (�7.1± 0.5) · 10�2 (�2.0± 0.3) · 100 (7.0± 1.3) · 100

39 : +��+�+ (�1.9± 3.7) · 10�4 (�7.4± 0.2) · 10�2 (�2.3± 0.3) · 100 (8.2± 1.5) · 100

42 : +�+�+� (�2.7± 2.5) · 10�4 (�8.3± 0.1) · 10�2 (�2.0± 0.3) · 100 (6.8± 1.3) · 100

43 : +�+��+ (1.5± 0.7) · 10�3 (�6.6± 0.4) · 10�2 (�2.3± 0.3) · 100 (8.1± 1.5) · 100

48 : +�++�� (4.0± 2.3) · 10�4 (2.1± 0.1) · 10�2 (�1.1± 0.1) · 10�1 (4.1± 0.6) · 10�1

49 : + +��++ (4.0± 2.5) · 10�4 (�2.9± 0.1) · 10�2 (�2.9± 0.4) · 10�1 (9.9± 1.8) · 10�1

54 : + +�++� (7.4± 7.8) · 10�4 (4.9± 0.4) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.3) · 100

55 : + +�+�+ (�5.4± 5.2) · 10�3 (7.4± 2.6) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.4) · 100

58 : + + +�+� (�6.0± 6.0) · 10�3 (7.7± 3.0) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.4) · 100

59 : + + +��+ (3.7± 4.6) · 10�4 (6.1± 0.2) · 10�2 (5.3± 0.7) · 10�1 (�1.8± 0.3) · 100

64 : + + ++�� (10± 141) · 10�6 (3.85± 0.07) · 10�2 (�1.4± 0.2) · 10�1 (5.4± 0.9) · 10�1

Table 2: Result of the fit of the quantity (Virt-SDK)/LO using the method of least

squares and the function (6.2) for the representative process gg ! tt̄tt̄. The case in-

cluding(excluding) the �
QCD
LA contribution corresponds to the quantities shown in the sec-

ond(third) inset of the lower-central plot of Fig. 4.

final state, we did not list them in the legend of the corresponding plots of Fig. 4. On the

other hand, in Tab. 2 we provide, as an example, the results of the fit of (Virt-SDK)/LO

for all leading-helicity configurations (and their sum) for the process gg ! tt̄tt̄. We have

used again the method of least squares and the function (6.2) as done for Tab. 1, but in

this case we have considered two di↵erent scenarios: the inclusion or the exclusion of the

�
QCD
LA contribution. By comparing the numbers in the first and third column of Tab. 2, one

can further see how the �
QCD
LA contribution is essential in flattening the (Virt-SDK)/LO

curve.
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Fit of (Virt-Sudakov)/LO
via

new implementation of the modifiedDP algorithm described in this work. Dashed lines refer

to the pure LA (SSCs!rkl terms not included), denoted in the plots as “SDK, s ! rkl OFF”,

while the solid lines to the case in which SSCs!rkl terms are taken into account, denoted

in the plots as “SDK, s ! rkl ON”. As expected, the values of the ratio over LO for

both dots and lines are negative and grow in absolute value for large values of s. A correct
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between each line and the dots converge to a constant value for s ! 1. Indeed, since all

the mass-suppressed terms of O(↵) corrections go to zero for large s, the terms that survive

are either logarithmic enhanced, those that have to be exactly captured by the LA (lines),

or constant for t/s fixed. We therefore separately display the interpolation of the di↵erence

between the dots and the solid line (second inset) and between the dots and the dashed

line (third inset). These quantities are denoted as (Virt-SDK)/LO in the plots. The layout

of the lower plots of Figs. 1 and 2 is very similar to the one of the upper plots, however, in

this case the x-axis corresponds to the angle ✓ between the first and third particle, which

in turn parametrises the value of t, in the range 10�2 . ✓ . ⇡/2. We have fixed the value

of s to
p
s = 10 TeV for all lower plots.

In order to produce the upper plots, the scan in
p
s with t/s fixed, we have performed

the following procedure. We start by generating the momenta for a phase-space point with
p
s = 103 GeV and t/s = �1/20 for the specific process considered. Then, we iteratively

repeat the following steps for increasing the value of
p
s by keeping fixed the t/s ratio

within an error of the order of permille. First, we rescale the trimomenta of the outgoing

particles by a common factor. Second, we impose on-shell conditions for the outgoing

particles in order to obtain their energies. Finally, we impose momentum conservation for

determining the momenta of the initial state. In this way, we can generate several phase-

space points by scanning the
p
s range and keeping the ratio t/s very stable. Each one of

the phase-space points obtained is then used as input for evaluating the exact virtual NLO

EW corrections of O(↵) as well the LA with and without the inclusion of the SSCs!rkl

terms. The SDK, s ! rkl ON and the SDK, s ! rkl OFF lines are the interpolation of

these LA results.

As can be seen in both Figs. 1 and 2, all the second and third insets of upper plots show

perfectly horizontal lines for large values of s, for each individual helicity configuration.

We have shown here only representative processes, but we did not see any exception in all

cases that we have checked. This is a clear sign of a correct implementation of the LA of

Sudakov logarithms.

In order to rigorously check the last statement, we have fitted the quantities (Virt-

SDK)/LO via a function of the form

A log10(
p
s/[1 GeV]) +B , (6.2)

with the method of least squares. While the coe�cient B has been found in general of the

order of few percents for the plots shown here, the quantity A is in general of the order of

10�4 and compatible with 0 due to the associated statistical error,14 therefore supporting

our previous statement about the correct implementation of the LA of Sudakov logarithms.
14We remind the reader that statistical errors also include e↵ects induced by the numerical method that
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space points by scanning the
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s range and keeping the ratio t/s very stable. Each one of

the phase-space points obtained is then used as input for evaluating the exact virtual NLO

EW corrections of O(↵) as well the LA with and without the inclusion of the SSCs!rkl

terms. The SDK, s ! rkl ON and the SDK, s ! rkl OFF lines are the interpolation of

these LA results.

As can be seen in both Figs. 1 and 2, all the second and third insets of upper plots show

perfectly horizontal lines for large values of s, for each individual helicity configuration.

We have shown here only representative processes, but we did not see any exception in all

cases that we have checked. This is a clear sign of a correct implementation of the LA of

Sudakov logarithms.

In order to rigorously check the last statement, we have fitted the quantities (Virt-

SDK)/LO via a function of the form

A log10(
p
s/[1 GeV]) +B , (6.2)

with the method of least squares. While the coe�cient B has been found in general of the

order of few percents for the plots shown here, the quantity A is in general of the order of

10�4 and compatible with 0 due to the associated statistical error,14 therefore supporting

our previous statement about the correct implementation of the LA of Sudakov logarithms.
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Formulas

irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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Casimir operators

The SU(2) Casimir operator is defined by

C =
3X

a=1

(T a)2. (B.8)

Loops involving charged gauge bosons are often associated with the product of the non-
abelian charges

(IW )2 :=
X

�=±

h
I
�
I
��
i
=

"
C � (T 3)2

s2
w

#

, (B.9)

and if one includes the contributions of neutral gauge bosons, one obtains the e↵ective
electroweak Casimir operator

C
ew :=

X

Va=A,Z,W±

I
VaI

V̄a =
1

c2
w

✓
Y

2

◆2

+
1

s2
w

C. (B.10)

For irreducible representations (fermions and scalars) with isospin T', the SU(2) Casimir
operator is proportional to the identity and reads

C'i'i0 (') = �'i'i0C', C' = T'[T' + 1]. (B.11)

For gauge bosons we have a reducible representation. In the symmetric basis C̃(V ) is a
diagonal 4⇥ 4 matrix

C̃
ṼaṼb

= �abC̃Ṽa
, (B.12)

with U(1) and SU(2) eigenvalues

C̃B = 0, C̃Wa = 2. (B.13)

The transformation of a matrix like (B.12) to the physical basis, yields a 4 ⇥ 4 matrix
with diagonal 2⇥ 2 block structure, i.e. without mixing between the charged sector (W±)
and the neutral sector (N = A,Z). In the neutral sector C(V ) becomes non-diagonal
owing to mixing of the U(1) and SU(2) eigenvalues,

CNN 0 =
h
U(✓w)C̃U

�1(✓w)
i

NN 0
= 2

 
s
2

w
�swcw

�swcw c
2

w

!

, (B.14)

whereas in the charged sector it remains diagonal,

C
W�W�0 = 2���0 . (B.15)

Explicit values for Y , Q, T 3, C, (IA)2, (IZ)2, (IW )2, Cew, and I±

Here we list the eigenvalues (or components) of the operators Y , Q, T 3, C, (IA)2,
(IZ)2, (IW )2, Cew, and I

±, that have to be inserted in our general results. For incoming
particles or outgoing antiparticles the values for the particles have to be used, for incoming
antiparticles or outgoing particles the values of the antiparticles.
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B Representation of SU(2) ⇥ U(1) operators

Generators of the gauge group and various group-theoretical matrices used in the
article are presented in detail. Our notation for the components of such matrices is

M'i'i0 ('), (B.1)

where the argument ' represents a multiplet and fixes the representation for the matrix
M , whereas 'i are the components of the multiplet. In this appendix we give explicit
representations for left- and right-handed fermions (' = f

L
, f

R
, f̄

L
, f̄

R), for gauge bosons
(' = V ) and for the scalar doublet (' = �). Where the representation is implicit, the
argument ' is omitted. For the eigenvalues of diagonal matrices we write

M'i'i0 = �'i'i0M'i . (B.2)

Symmetric and physical gauge fields and gauge couplings

For gauge bosons we take special care of the e↵ect of Weinberg rotation (mixing). The
symmetric basis Ṽa = B,W

1
,W

2
,W

3, is formed by the U(1) and SU(2) gauge bosons,
which transform as a singlet and a triplet, respectively, and quantities in this basis are
denoted by a tilde. The physical basis is given by the charge and mass eigenstates Va =
A,Z,W

+
,W

�. The physical charged gauge bosons,

W
± =

W
1
⌥ iW 2

p
2

, (B.3)

are pure SU(2) states, whereas in the neutral sector the SU(2) and U(1) components mix,
and the physical fields N = A,Z are related to the symmetric fields Ñ = B,W

3 by the
Weinberg rotation,

N = U
NÑ

(✓w)Ñ , U(✓w) =

 
cw �sw

sw cw

!

(B.4)

with cw = cos ✓w and sw = sin ✓w. In the on shell renormalization scheme the Weinberg
angle is fixed by

cw =
MW

MZ

. (B.5)

The gauge couplings are given by the generators of global gauge transformations (2.4).
In the symmetric basis, they read

Ĩ
B = �

1

cw

Y

2
, Ĩ

W
a
=

1

sw
T

a
, a = 1, 2, 3, (B.6)

where Y is the weak hypercharge and T
a are the components of the weak isospin. In the

physical basis we have

I
A = �Q, I

Z =
T

3
� s

2

w
Q

swcw
, I

± =
1

sw
T

± =
1

sw

T
1
± iT 2

p
2

(B.7)

with Q = T
3 + Y/2.
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be non-diagonal. We will return to this point discussing the implementation in Mad-

Graph5 aMC@NLO. Using DR the electromagnetic DL reads

L
em(s,Q2

,m
2
k
) ⌘ 2l(s) log

✓
M

2
W

Q2

◆
+ L(M2

W , Q
2)� L

reg(m2
k
, Q

2) , (2.20)

with

L
reg(m2

k
, Q

2) ⌘

(
0 if m2

k
= 0 ,

L(m2
k
, Q

2) otherwise .
(2.21)

2.4 SSC: Subleading soft-collinear contributions

Unlike the LSC terms, the SSC ones remain a sum over pairs of external legs of the form

�
SSC

M
i1...in =

nX

k=1

X

l<k

X

Va=A,Z,W±

�
Va,SSC
i
0
kiki

0
lil
(k, l)M

i1...i
0
k...i

0
l...in

0 . (2.22)

This part is the one with the largest di↵erences w.r.t. Ref. [39]. The exchange of soft

neutral gauge bosons contributes with

�
A,SSC
i
0
kiki

0
lil
(k, l) =


2
�
l(s) + l(M2

W , Q
2)
�✓

log
|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
W )

�
I
A

i
0
kik

(k)IA
i
0
lil
(l),

�
Z,SSC
i
0
kiki

0
lil
(k, l) =


2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
Z)

�
I
Z

i
0
kik

(k)IZ
i
0
lil
(l), (2.23)

and charged gauge bosons yields

�
W

±
,SSC

i
0
kiki

0
lil

(k, l) =


2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
W )

�
I
±
i
0
kik

(k)I⌥
i
0
lil
(l), (2.24)

The quantity �s!rkl(rkl,M2) is set equal to zero when the condition (2.4) is assumed and

the LA is applied in a strict sense, as done in Ref. [39]. Taking instead into account the

fact that s � rkl � M
2, this quantity reads

�s!rkl(rkl,M
2) ⌘ L(|rkl|, s) + 2l(M2

W ,M
2) log

|rkl|

s
� 2i⇡⇥(rkl)l(|rkl|, s) , (2.25)

and precisely corresponds to the SSCs!rkl logarithms of eq. (2.17).

The quantities I
A, IZ and I

± are the couplings with respectively the photon, the Z

boson and the W
± boson, where we have omitted the indices i

0
j
ij . While I

A is always

diagonal in these indices, IZ can be non-diagonal and I
±(k) is always o↵ diagonal. The

impact of the new imaginary terms proportional to i⇡⇥(rkl) on results obtained with the

DP algorithm is directly connected to the aforementioned o↵-diagonal structures. Indeed

the virtual contribution to NLO EW corrections involves terms of the form 2<(M0�M
⇤),

where

2<
⇣
M

i1...in
0 (�Mi1...in)⇤

⌘
� 2<

⇣
M

i1...in
0

⇣
�
Va,SSC
i
0
kiki

0
lil
(k, l)M

i1...i
0
k...i

0
l...in

0

⌘⇤⌘
. (2.26)

If the I
Va entering eq. (2.26) via �

Va,SSC is diagonal or both M
i1...in
0 and M

i1...i
0
k...i

0
l...in

0 are

real, like in 2 ! 2 processes, the contributions of imaginary terms proportional to i⇡⇥(rkl)
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Formulas
vanish, otherwise they formally contribute. It is also interesting to note that with DR

and massless photons, setting Q
2 = s the entire �

A,SSC contribution vanishes if we also

set �s!rkl(rkl,M2
W
) = 0. This can be seen from the definition of �A,SSC in eq. (2.23).

This argument will also be recalled in Sec. 3.1, where the QCD contribution to NLO EW

corrections to squared matrix-element is discussed.

2.5 C: Collinear and soft single logarithms

In this section we provide the results obtained in Ref. [39], adapting them for the case

with massless light-fermions and photons. The formula for the collinear and soft single

logarithms can be written as a sum over the external particles and polarisations,

�
C
M

i1...in =
nX

k=1

�
C
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.27)

with �
C
i
0
kik

(k) that depends on the external particle and polarisation 'ik . We provide the

results in the following. The expressions for all the new terms introduced in the formulas

can be found in Ref. [39].

Chiral fermions

Considering fermions f
� with chirality  = R,L and isospin indices � = ±, the result is

�
C
f�f�0 (f

) = ���0

("
3

2
C

ew
f �

1

8s2w

 
(1 + �R)

m
2
f�

M
2
W

+ �L

m
2
f��

M
2
W

!#
l(s) +Q

2
f�
l
em(m2

f�
)

)
,

(2.28)

where the pure electromagnetic logarithms reads

l
em(m2

f
) ⌘

1

2
l
reg(M2

W ,m
2
f
) + l(M2

W , Q
2) , (2.29)

with

l
reg(M2

W ,m
2
f
) ⌘

(
l(M2

W
, Q

2) if m2
f
= 0 ,

l(M2
W
,m

2
f
) otherwise .

(2.30)

Transverse charged gauge bosons W

The result is

�
C
W�W�0 (VT) = ���0


1

2
b
ew
W l(s) +Q

2
W l

em(M2
W )

�
, (2.31)

where b
ew
W

is a coe�cient of the �-function.

Transverse neutral gauge bosons A,Z

The results for symmetric and antisymmetric parts are expressed in terms of the coe�cients

b
ew
NN 0 of the �-function. The result is

�
C
N 0N (VT) =

1

2
[EN 0Nb

ew
AZ + b

ew
N 0N ] l(s) +

1

2
�NA�N 0A�Z

em
AA. (2.32)
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where the non-diagonal �-function b
ew
N 0N coe�cient is entering the expression. Since EAZ =

�EZA = 1 the non-diagonal components read

�
C
AZ(VT) = b

ew
AZ l(s), �

C
ZA(VT) = 0. (2.33)

The quantity Z
em
AA

in DR reads

�Z
em
AA = �

4

3

X

f,i,� 6=t

N
f

CQ
2
f�
l(M2

W , Q
2) . (2.34)

Longitudinally polarised gauge bosons

By means of amplitudes involving Goldstone bosons, the complete collinear corrections

(2.27) for longitudinal gauge bosons is

�
C
M

...W
±
L ... = �

C
�±�±(�)M

...�
±
...

0 = �
C
�±�±(�)M

...W
±
L ...

0 ,

�
C
M

...ZL... = i�C��(�)M
...�...

0 = �
C
��(�)M

...ZL...

0 , (2.35)

with

�
C
�±�±(�) =


2Cew

� �
N

t

C

4s2w

m
2
t

M
2
W

�
l(s) +Q

2
W l

em(M2
W ),

�
C
��(�) =


2Cew

� �
N

t

C

4s2w

m
2
t

M
2
W

�
l(s) . (2.36)

Higgs boson

The complete correction is

�
C
HH(�) =


2Cew

� �
N

t

C

4s2w

m
2
t

M
2
W

�
l(s) . (2.37)

2.6 PR: Logarithms connected to the parameter renormalisation

The last ingredient is the logarithms related to the UV renormalisation. In Ref. [39] they

have been identified via the formula

�
PR

M =

✓
�M0

�e
�e+

�M0

�cw
�cw +

�M0

�ht
�ht +

�M0

�hH
�h

e↵
H

◆ ���
µ2=s

, (2.38)

where the quantities

ht =
mt

MW

, hH =
M

2
H

M
2
W

, (2.39)

are related to the top-quark Yukawa coupling and to the scalar self coupling, respectively.

All the �’s are the logarithmic part of the renormalisation counter-terms of the corre-

sponding dimensionless quantities. In the �’s, regardless of the value of Q chosen for

the regularising the IR divergences in the other contributions (LSC, SSC, C), the UV

regularisation-scale µ must be set as µ2 = s. Indeed, although renormalised amplitudes in

an on-shell scheme do not depend on the value of the unphysical UV-regularisation scale

– 14 –



Formulas

µ, the DP algorithm has been derived assuming µ
2 = s. Therefore, in order to preserve

the cancellation of the µ dependence related to the UV poles, in the logarithmic part of

the UV counter-terms it is necessary that µ2 = s.

Here, we rearrange the formula in eq. (2.38) for practical purposes related to the

implementation in MadGraph5 aMC@NLO, discussed in Sec. 5, but the results are fully

equivalent with those of Ref. [39]. In practice we rearrange it into

�
PR

M =

✓
�M0

�↵
�↵+

�M0

�M
2
W

�M
2
W +

�M0

�M
2
Z

�M
2
Z +

�M0

�mt

�mt +
�M0

�ntad
�ntad

◆ ���
µ2=s

. (2.40)

It is worth to recall that the renormalisation of masses in propagators or in couplings

with mass dimension is not relevant, because those contribute only to mass-suppressed

amplitudes. The parameter ntad is a technical parameter that has the only purpose of

keeping track of the appearances of the tadpole counter-term. In practice what we do is

to modify Feynman rules for three-scalar and four-scalar vertices by rescaling their value

by the parameter ntad, which is then set equal to one in the numerical evaluation.

We use the following formulas:

�M
2
W

M
2
W

= � [bewW � 4Cew
� ] l(µ2)�

N
t

C

2s2w

m
2
t

M
2
W

l(µ2),

�M
2
Z

M
2
Z

= � [bewZZ � 4Cew
� ] l(µ2)�

N
t

C

2s2w

m
2
t

M
2
W

l(µ2), (2.41)

and

�↵ =
2�Ze

4⇡
=

1

4⇡

�
�b

ew
AAl(µ

2) + 2�Zem
e

�
, (2.42)

where the pure electromagnetic part reads

�Z
em
e ⌘

(
�

1
2�Z

em
AA

= 2
3

P
f,i,� 6=t

N
f

CQ
2
f�
l(M2

W
, Q

2) in the ↵(0) scheme ,

0 in the Gµ or ↵(MZ) scheme.
(2.43)

In this work, all the results are presented by adopting the Gµ scheme, where in the place

of ↵ the input parameter is Gµ, which is related to ↵ via the tree-level relation Gµ =

⇡↵/(
p
2M2

Z
c
2
ws

2
w). This translates into the substitution

�M0

�↵
�↵ !

�M0

�Gµ

�Gµ with �Gµ =
�Gµ

�↵
�↵+

�Gµ

�M
2
Z

�M
2
Z +

�Gµ

�M
2
W

�M
2
W , (2.44)

in eq. (2.40).

The remaining terms are

�mt

mt

=


1

4s2w
+

1

8s2wc
2
w
+

3

2c2w
Qt �

3

c2w
Q

2
t +

3

8s2w

m
2
t

M
2
W

�
l(µ2) , (2.45)

where on-shell renormalisation for the mass is assumed, and finally

�ntad =
e

2sw

�t

MWM
2
H

, (2.46)
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with the contribution from the tadpole renormalisation reading

�t = �T =
1

eswMW


�
3

2
M

2
W

✓
M

2
Z

c2w
+ 2M2

W

◆

�
M

2
H

4
(2M2

W +M
2
Z + 3M2

H) + 2N t

Cm
4
t

�
l(µ2) . (2.47)

3 Sudakov logarithms and NLO EW corrections

In the previous section we have revisited the DP algorithm, which allows the calculation

of electroweak DL and SL in LA for virtual scattering amplitudes. On the other hand,

for collider results and in general for the calculation of physical observables, the relevant

quantities are amplitudes that are either squared or interfered among them. In particular

in this work our final goal is the NLO EW corrections to cross sections.

For any di↵erential or inclusive cross section ⌃, adopting the notation already used in

Refs. [12, 16, 17, 82, 97–104], the di↵erent contributions from the expansion in powers of

↵S and ↵ can be denoted as:

⌃LO(↵S,↵) = ⌃LO1
+ · · ·+ ⌃LOk

, (3.1)

⌃NLO(↵S,↵) = ⌃NLO1
+ · · ·+ ⌃NLOk+1

, (3.2)

with k being process dependent and k � 1.

Each ⌃LOi
denotes a specific ↵n

S↵
m perturbative order that can be present at LO, i.e.,

arising from tree-level diagrams only. On the contrary, each ⌃NLOi
denotes a specific NLO

perturbative order to which the interferences between di↵erent classes of tree-level and

one-loop diagrams can contribute. For a given process, the values of n and m vary for each

⌃LOi
, but the sum n+m is constant. Moreover, if ⌃LOi

/ ↵
n
S↵

m then ⌃LOi+1
/ ↵

n�1
S ↵

m+1,

⌃NLOi
/ ↵

n+1
S ↵

m and ⌃NLOi+1
/ ↵

n
S↵

m+1.

It easy to understand that if the perturbative order of each ⌃NLOi
is denoted as

O(⌃NLOi
) then

O(⌃NLOi
) = O(⌃LOi

)⇥ ↵S = O(⌃LOi�1
)⇥ ↵ . (3.3)

Equation (3.3) implies something that is very well known and, e.g., has been discussed

in details Ref. [82]. If ⌃NLOi
involves EW corrections (i > 1) and it is not the term with

the possibly highest ↵ power at NLO (i < k + 1), then both QCD and EW loops on top

of tree-level amplitudes can enter into the game. Even worse, this separation into “QCD

loops” and “EW loops” is artificial and especially cannot be rigorously defined. Since

one of the main features of our implementation of the DP algorithm is the possibility of

comparing the DL and SL terms in LA against the exact result for NLO EW corrections,

the contribution of such “QCD loops” cannot be ignored.

In LA, the contribution from one-loop corrections to the quantity ⌃NLOi
, denoted as

⌃virt
NLOi

can be written in the form

(⌃virt
NLOi

)
���
LA

= ⌃LOi�1
�
EW
LA + ⌃LOi

�
QCD
LA . (3.4)
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Purely WeakThe purely weak version of the DP algorithm, SDKweak, can be obtained following

these steps:

1. Calculate the �
PR in eq. (2.12) as in the standard SDK approach.

2. For each external particle 'ik in (2.9), set

Qk = I
A(k) = 0 . (4.1)

This step alone has the e↵ect of eliminating all the terms tagged as “em”, with the

exception of �Zem
AA

. It also eliminates all the SSC terms and C terms that lead to

SL originating from photons, with the exception of those related to transverse W

bosons.

3. For each external particle 'ik in (2.9), perform the replacement

C
ew
i
0
kik

(k) �! C
ew
i
0
kik

(k)�Q
2
k
, (4.2)

with the value of Q2
k
before enforcing eq. (4.1). This, in combination with eq. (4.1),

has the e↵ect of eliminating the DL due to photons.

4. Perform the replacement

b
ew
W �! b

ew
W � 11/3 . (4.3)

This has the e↵ect of eliminating for the transverse W bosons the C terms that lead

to SL originating from photons.

5. Set

�Z
em
AA = 0 , (4.4)

and perform the replacement

b
ew
AA �! b

ew
AA +

4

3

X

f,i,� 6=t

N
f

CQ
2
f�

= b
ew
AA + 80/9 . (4.5)

This has the e↵ect of eliminating, for the photons, the C terms that lead to SL

originating from light fermions.

6. Calculate the remaining terms in eq. (2.12) with the new redefinitions of steps 2–5.

We want to stress that, thank to the step 1, the redefinitions of steps 2–5 do not apply

to all the PR contributions discussed in Sec. 2.6; for them any QED-like contribution is

retained. We remind the reader that also in this context we assume the use of either

the ↵(MZ) or Gµ-scheme, which both have an IR structure that is MS-like, namely, IR

poles are not present in the ↵ counter-term, �↵.8 This di↵erence of treatment for the

PR terms, besides the definition of purely weak and QED introduced before, can also be

understood in a di↵erent way. Logarithms from PR are related to UV renormalisation and

8The algorithm therefore has to be slightly modified for the case of isolated photons in the final state

(see also the discussion in Ref. [17]); we leave this to future work.
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Structure of NLO EW-QCD corrections

_s
2_2__s

3 _s_
3 _4

_2_s_s
2_ _3

LO


Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply

– 8 –
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cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply

– 8 –

as example
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.
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1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.
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tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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QCD
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1/2) VQCD,1 = O(α1
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Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)
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3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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for three different collider energies. The results in parentheses are relevant to the boosted
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Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply

– 8 –

as example

59



Structure of NLO EW-QCD corrections

_s
2_2__s

3 _s_
3 _4

_2_s_s
2_ _3

QCD
 EW

LO


NLO


Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –

Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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If it is a photon,

there are new

IR singularities

tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply
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Complete-NLO

The structure of the paper is the following. In sec. 2 we describe the calculations and
we introduce a more suitable notation for referring to the various O(↵i

s↵
j) contributions. In

sec. 3 we provide numerical results at the inclusive and differential levels for complete-NLO
predictions for proton–proton collisions at 13 and 100 TeV. We discuss in detail the impact
of the individual O(↵i

s↵
j) contributions. The common input parameters are described

in sec. 3.1, while pp ! tt̄W± and pp ! tt̄tt̄ results are described in secs. 3.2 and 3.3,
respectively. Conclusions are given in sec. 4.

2 Calculation framework for tt̄W±
and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of ↵s and ↵, a generic observable for the processes
pp ! tt̄W±(+X) and pp ! tt̄tt̄(+X) can be expressed as

⌃tt̄W
±
(↵s,↵) =

X

m+n�2

↵m

s ↵n+1⌃tt̄W
±

m+n+1,n , (2.1)

⌃tt̄tt̄(↵s,↵) =
X

m+n�4

↵m

s ↵n⌃tt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation
introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of ⌃tt̄W

±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are
given by the terms with m + n = 3 and are induced by the interference of diagrams from
the all the possible Born-level and one-loop amplitudes as well all the possible interferences
among tree-level diagrams involving one additional quark, gluon or photon emission. Anal-
ogously, for tt̄tt̄ production, LO contributions consist of ⌃tt̄tt̄

m+n,n terms with m + n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate
all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for
⌃tt̄W

±
(↵s,↵) and m+ n = 4, 5 for ⌃tt̄tt̄(↵s,↵).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the
different ⌃tt̄W

±
m+n+1,n

and ⌃tt̄tt̄
m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as ⌃tt̄W
±

LO
and ⌃tt̄tt̄

LO
and further redefine the perturbative orders entering

these two quantities as

⌃tt̄W
±

LO (↵s,↵) = ↵2

s↵⌃
tt̄W

±
3,0 + ↵s↵⌃

tt̄W
±

3,1 + ↵2⌃tt̄W
±

3,2

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
, (2.3)

⌃tt̄tt̄

LO(↵s,↵) = ↵4

s⌃
tt̄tt̄

4,0 + ↵3

s↵⌃
tt̄tt̄

4,1 + ↵2

s↵
2⌃tt̄tt̄

4,2 + ↵3

s↵⌃
tt̄tt̄

4,3 + ↵4⌃tt̄tt̄

4,4

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
+ ⌃LO4

+ ⌃LO5
. (2.4)

In a similar fashion the NLO corrections and their single perturbative orders can be defined
as

⌃tt̄W
±

NLO (↵s,↵) = ↵3

s↵⌃
tt̄W

±
4,0 + ↵2

s↵
2⌃tt̄W

±
4,1 + ↵s↵

3⌃tt̄W
±

4,2 + ↵4⌃tt̄W
±

4,3

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

, (2.5)

⌃tt̄tt̄

NLO(↵s,↵) = ↵5

s⌃
tt̄tt̄

5,0 + ↵4

s↵
1⌃tt̄tt̄

5,1 + ↵3

s↵
2⌃tt̄tt̄

5,2 + ↵2

s↵
3⌃tt̄tt̄

5,3 + ↵1

s↵
4⌃tt̄tt̄

5,4 + ↵5⌃tt̄tt̄

5,5

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

+ ⌃NLO5
+ ⌃NLO6

. (2.6)
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Figure 1. Representative diagrams for the Born q̄q0 ! tt̄W± amplitude. The left diagram is of
O(↵s↵1/2), the right one is of O(↵3/2).
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Figure 2. Representative diagrams for the q̄g ! tt̄W±q̄0 real-emission amplitudes. The left
diagram is of O(↵3/2

s ↵1/2) and leads to log2(p2T (tt̄)/m
2

W ) terms in the NLO1 contribution. The
right one is of O(↵1/2

s ↵3/2), involves the tW ! tW scattering and contributes to the NLO3.

In the following we will use the symbols ⌃(N)LOi
or interchangeably their shortened

aliases (N)LO
i
for referring to the different perturbative orders. Clearly the ⌃(N)LOi

terms
in tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are
different quantities. One should bear in mind that, usually, with the term “LO” one refers
only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD
accuracy is ⌃LO1

+⌃NLO1
, which we will also denote as LOQCD +NLOQCD. The so-called

NLO EW corrections which are of O(↵) w.r.t. the LO1, are the ⌃NLO2
terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LO
i
notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction
at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also
denoted as “LO +NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is
in turn composed by tt̄W+ and tt̄W� production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W�)production, tree-level diagrams originate only from ud̄(ūd) initial states
(u and d denote generic up- and down-type quarks), where a W+(W�) is radiated from the
u(d) quark and the tt̄ pair is produced either via a gluon or a photon/Z boson (see Fig. 1).
The former class of diagrams leads to the LO1 via squared amplitude, the latter to LO3.
The interference between these two classes of diagrams is absent due to colour, thus LO2

is analytically zero. Conversely, all the NLOi contributions are non-vanishing.
The NLO1 is in general large, it has been calculated in refs. [10, 35–37] and studied
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are present.

q̄

W±q�

t̄

t

1

q̄

W±

Z/�

q�

t̄

t

2

Figure 1. Representative diagrams for the Born q̄q0 ! tt̄W± amplitude. The left diagram is of
O(↵s↵1/2), the right one is of O(↵3/2).

q̄

W±

q̄�

t̄

t

3

t̄

t

W±

H

q̄ q̄�

4

Figure 2. Representative diagrams for the q̄g ! tt̄W±q̄0 real-emission amplitudes. The left
diagram is of O(↵3/2

s ↵1/2) and leads to log2(p2T (tt̄)/m
2

W ) terms in the NLO1 contribution. The
right one is of O(↵1/2

s ↵3/2), involves the tW ! tW scattering and contributes to the NLO3.

In the following we will use the symbols ⌃(N)LOi
or interchangeably their shortened

aliases (N)LO
i
for referring to the different perturbative orders. Clearly the ⌃(N)LOi

terms
in tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are
different quantities. One should bear in mind that, usually, with the term “LO” one refers
only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD
accuracy is ⌃LO1

+⌃NLO1
, which we will also denote as LOQCD +NLOQCD. The so-called

NLO EW corrections which are of O(↵) w.r.t. the LO1, are the ⌃NLO2
terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LO
i
notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction
at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also
denoted as “LO +NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is
in turn composed by tt̄W+ and tt̄W� production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W�)production, tree-level diagrams originate only from ud̄(ūd) initial states
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The structure of the paper is the following. In sec. 2 we describe the calculations and
we introduce a more suitable notation for referring to the various O(↵i

s↵
j) contributions. In

sec. 3 we provide numerical results at the inclusive and differential levels for complete-NLO
predictions for proton–proton collisions at 13 and 100 TeV. We discuss in detail the impact
of the individual O(↵i

s↵
j) contributions. The common input parameters are described

in sec. 3.1, while pp ! tt̄W± and pp ! tt̄tt̄ results are described in secs. 3.2 and 3.3,
respectively. Conclusions are given in sec. 4.

2 Calculation framework for tt̄W±
and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of ↵s and ↵, a generic observable for the processes
pp ! tt̄W±(+X) and pp ! tt̄tt̄(+X) can be expressed as

⌃tt̄W
±
(↵s,↵) =

X

m+n�2

↵m

s ↵n+1⌃tt̄W
±

m+n+1,n , (2.1)

⌃tt̄tt̄(↵s,↵) =
X

m+n�4

↵m

s ↵n⌃tt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation
introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of ⌃tt̄W

±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are
given by the terms with m + n = 3 and are induced by the interference of diagrams from
the all the possible Born-level and one-loop amplitudes as well all the possible interferences
among tree-level diagrams involving one additional quark, gluon or photon emission. Anal-
ogously, for tt̄tt̄ production, LO contributions consist of ⌃tt̄tt̄

m+n,n terms with m + n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate
all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for
⌃tt̄W

±
(↵s,↵) and m+ n = 4, 5 for ⌃tt̄tt̄(↵s,↵).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the
different ⌃tt̄W

±
m+n+1,n

and ⌃tt̄tt̄
m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as ⌃tt̄W
±

LO
and ⌃tt̄tt̄

LO
and further redefine the perturbative orders entering

these two quantities as

⌃tt̄W
±

LO (↵s,↵) = ↵2

s↵⌃
tt̄W

±
3,0 + ↵s↵⌃

tt̄W
±

3,1 + ↵2⌃tt̄W
±

3,2

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
, (2.3)

⌃tt̄tt̄

LO(↵s,↵) = ↵4

s⌃
tt̄tt̄

4,0 + ↵3

s↵⌃
tt̄tt̄

4,1 + ↵2

s↵
2⌃tt̄tt̄

4,2 + ↵3

s↵⌃
tt̄tt̄

4,3 + ↵4⌃tt̄tt̄

4,4

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
+ ⌃LO4

+ ⌃LO5
. (2.4)

In a similar fashion the NLO corrections and their single perturbative orders can be defined
as

⌃tt̄W
±

NLO (↵s,↵) = ↵3

s↵⌃
tt̄W

±
4,0 + ↵2

s↵
2⌃tt̄W

±
4,1 + ↵s↵

3⌃tt̄W
±

4,2 + ↵4⌃tt̄W
±

4,3

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

, (2.5)

⌃tt̄tt̄

NLO(↵s,↵) = ↵5

s⌃
tt̄tt̄

5,0 + ↵4

s↵
1⌃tt̄tt̄

5,1 + ↵3

s↵
2⌃tt̄tt̄

5,2 + ↵2

s↵
3⌃tt̄tt̄

5,3 + ↵1

s↵
4⌃tt̄tt̄

5,4 + ↵5⌃tt̄tt̄

5,5

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

+ ⌃NLO5
+ ⌃NLO6

. (2.6)
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W ) terms in the NLO1 contribution. The
right one is of O(↵1/2

s ↵3/2), involves the tW ! tW scattering and contributes to the NLO3.

In the following we will use the symbols ⌃(N)LOi
or interchangeably their shortened

aliases (N)LO
i
for referring to the different perturbative orders. Clearly the ⌃(N)LOi

terms
in tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are
different quantities. One should bear in mind that, usually, with the term “LO” one refers
only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD
accuracy is ⌃LO1

+⌃NLO1
, which we will also denote as LOQCD +NLOQCD. The so-called

NLO EW corrections which are of O(↵) w.r.t. the LO1, are the ⌃NLO2
terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LO
i
notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction
at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also
denoted as “LO +NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is
in turn composed by tt̄W+ and tt̄W� production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W�)production, tree-level diagrams originate only from ud̄(ūd) initial states
(u and d denote generic up- and down-type quarks), where a W+(W�) is radiated from the
u(d) quark and the tt̄ pair is produced either via a gluon or a photon/Z boson (see Fig. 1).
The former class of diagrams leads to the LO1 via squared amplitude, the latter to LO3.
The interference between these two classes of diagrams is absent due to colour, thus LO2

is analytically zero. Conversely, all the NLOi contributions are non-vanishing.
The NLO1 is in general large, it has been calculated in refs. [10, 35–37] and studied
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Cross sections: order by order

13 TeV 100 TeV

�[%] µ = HT /4 µ = HT /2 µ = HT

LO2 - - -
LO3 0.8 0.9 1.1

NLO1 34.8 (7.0) 50.0 (25.7) 63.4 (42.0)
NLO2 �4.4 (�4.8) �4.2 (�4.6) �4.0 (�4.4)
NLO3 11.9 (8.9) 12.2 (9.1) 12.5 (9.3)
NLO4 0.02 (�0.02) 0.04 (�0.02) 0.05 (�0.01)

Table 3. �(N)LOi
/�LOQCD ratios for tt̄W± production at 13 TeV for various values of µ = µr = µf .

i > 1 changes the cross section by about 1% and leaves also the scale dependence almost
unchanged. As discussed in sec. 2, the LO2 is exactly zero due to colour, thus this small
correction is entirely coming from the LO3 contribution. In Tabs. 3 and 4 it can be seen
that the scale dependence of this LO3 contribution is slightly different from the LO1. The
factorisation scale dependence is almost identical for the LO1 and LO3 terms (both are qq̄0

initiated and have similar kinematic dependence), thus this difference is entirely due to the
variation of the renormalisation scale, which, at leading order, only enters the running of
↵s. The LO1 has two powers of ↵s while the LO3 has none. The value of ↵s decreases with
increasing scales, and therefore, it is no surprise that �LO3

increases with larger values for
the scales.

As already known, in tt̄W± production NLO QCD corrections are large and lead to a
reduction of the scale uncertainty. Indeed, for the central scale choice, the total cross section
at 13 TeV increases by 50% when including the NLOQCD contribution, and a massive 150%
correction is present at 100 TeV. The reduction in the scale dependence is about a factor
two for 13 TeV, resulting in an 11% uncertainty. On the other hand, given the large
NLOQCD corrections, at 100 TeV the resulting scale dependence at LOQCD + NLOQCD is
larger than at 13 TeV, remaining at about 16%. Comparing these pure-QCD predictions to
the complete-NLO cross sections (LO + NLO) we see that the latter are about 6% larger
at 13 TeV, while the relative scale dependencies are identical. At 100 TeV, even though
the relative scale dependence at complete-NLO is 1-2 percentage points smaller than at
LOQCD + NLOQCD, in absolute terms it is actually larger. This effect is due to the large
increase of about 26% induced by (N)LO

i
terms with i > 1. Indeed, this increase is mostly

coming from the contribution of the tW ! tW scattering, which appears at NLO3 via the
quark real-emission and has a Born-like scale dependence. However, this dependence is
relatively small since the NLO3 involves only a single power of ↵s.

In Tabs. 3 and 4 we can see that �NLO1
⌘ �NLOQCD

is strongly µ dependent, while
this is not the case for �NLOi with i > 1. In fact, this behaviour is quite generic and not
restricted to tt̄W± production; it can be observed for a wide class of processes. The µ

dependence in �NLO1
leads to the reduction of the scale dependence of LOQCD +NLOQCD

results w.r.t. the LOQCD ones. On the contrary, the �NLOi quantities with i > 1 are
typically quite independent of the value of µ. The reason is the following. The NLOi

contributions are given by “QCD corrections” to LOi contributions as well “EW corrections”

– 11 –

�[%] µ = HT /4 µ = HT /2 µ = HT

LO2 - - -
LO3 0.9 1.1 1.3

NLO1 159.5 (69.8) 149.5 (71.1) 142.7 (73.4)
NLO2 �5.8 (�6.4) �5.6 (�6.2) �5.4 (�6.1)
NLO3 67.5 (55.6) 68.8 (56.6) 70.0 (57.6)
NLO4 0.2 (0.1) 0.2 (0.2) 0.3 (0.2)

Table 4. �(N)LOi
/�LOQCD ratios for tt̄W± production at 100 TeV for various values of µ = µr = µf .

to the LOi�1 ones. The former involve explicit logarithms of µ due the renormalisation of
both ↵s and PDFs, while the latter contain only explicit logarithms of µ due the O(↵)

PDFs counterterms. Indeed, in the Gµ-scheme, or other schemes such as ↵(0) or ↵(mZ),
the numerical input for ↵ does not depend on an external renormalisation scale. Moreover,
the O(↵) PDF counterterms induce a much smaller effect than those of QCD, since they are
O(↵/↵s) suppressed and do not directly involve the gluon PDF. Thus, for a generic process,
since a LOi contribution is typically quite suppressed w.r.t. the LOi�1 one —or even absent,
as e.g. for (multi) EW vector boson production— the scale dependence of �NLOi with i > 1

is small. For this reason it is customary, and typically also reasonable, to quote NLO EW
corrections independently from the scale definition. As can be seen in Tabs. 3 and 4 this is
also correct for tt̄W±, but as we will see in the next section the situation is quite different
for tt̄tt̄ production, where also the �(N)LOi

(µ) quantities with i > 1 strongly depend on the
value of µ.

By considering the µ dependence of the �NLO1
(µ) contributions in Tabs. 3 and 4, we

see a different behaviour in the two tables. At 13 TeV the scale dependence of �NLOQCD
(µ)

increases with increasing scales. This is to be expected: the LO1 contribution has a large
renormalisation-scale dependence, resulting in a rapidly decreasing cross section with in-
creasing scales. In order to counterbalance this, the scale dependence of the NLO1 contribu-
tion must be opposite so that the scale dependence at NLO QCD accuracy is reduced. On
the other hand, at 100 TeV, the scale dependence of the �NLO1

(µ) decreases with increasing
scales, suggesting that the scale dependence at LOQCD + NLOQCD is actually larger than
at LOQCD. As can be seen in Tab. 2 this does not appear to be the case. The reason
is that contrary to 13 TeV, at 100 TeV collision energy the LOQCD has not only a large
renormalisation-scale dependence, but also the factorisation-scale one is sizeable. In fact,
the scale dependence in Tab. 2 is dominated by terms in which µr and µf are varied in op-
posite directions, i.e., {µr, µf} = {2µc, µc/2} and {2µc, µc/2}. However, in Tab. 4 we only
consider the simultaneous variation of µr and µf . If we had estimated the scale uncertainty
in Tabs. 1 and 2 by only varying µ = µr = µf , we would actually have seen an increment
of the uncertainties in moving from LOQCD to LOQCD +NLOQCD.

The NLO EW corrections, the NLO2 contribution, are negative and have a �4-6%
impact w.r.t. the LO1 cross section. This is well within the LOQCD + NLOQCD scale
uncertainties. The opening of the tW ! tW scattering enhances the NLO3 contribution
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�[fb] LOQCD LOQCD +NLOQCD LO LO +NLO LO+NLO

LOQCD+NLOQCD

µ = HT /2 363+24%

�18%
544+11%

�11%
(456+5%

�7%
) 366+23%

�18%
577+11%

�11%
(476+5%

�7%
) 1.06 (1.04)

Table 1. Cross sections for tt̄W± production at 13 TeV in various approximations. The numbers
in parentheses are obtained with the jet veto of eq. (3.6) applied.

�[pb] LOQCD LOQCD +NLOQCD LO LO +NLO LO+NLO

LOQCD+NLOQCD

µ = HT /2 6.64+28%

�21%
16.58+17%

�15%
(11.37+11%

�12%
) 6.72+27%

�21%
20.86+15%

�14%
(14.80+11%

�11%
) 1.26 (1.30)

Table 2. Same as in Tab. 1 but for 100 TeV.

3.2 Results for pp ! tt̄W±
production

We start by presenting predictions for pp ! tt̄W± total cross sections at 13 and 100 TeV
proton–proton collisions with and without applying a jet veto and then we discuss results
at the differential level. The total cross sections at 13 TeV for tt̄W± production are shown
in Tab. 1 at different accuracies, namely, LOQCD, LOQCD +NLOQCD, LO and LO+NLO.
We also show for each value its relative scale uncertainty and we provide the ratio of the
predictions at LO + NLO and LOQCD +NLOQCD accuracy. Analogous results at 100 TeV
are displayed in Tab. 2. Numbers in parentheses refer to the case in which we apply a jet
veto, rejecting all the events with

pT (j) > 100 GeV and |y(j)| < 2.5 , (3.6)

where also hard photons are considered as a jet.4 The purpose of this jet veto will become
clear in the discussion below. Further details about the size of the individual (N)LO

i
terms

are provide in Tab. 3 (13 TeV) and Tab. 4 (100 TeV), where we show predictions for the
quantities

�(N)LOi
(µ) =

⌃(N)LOi
(µ)

⌃LOQCD
(µ)

, (3.7)

where ⌃(µ) is simply the total cross section evaluated at the scale µf = µr = µ. In Tabs. 3
and 4 we do not show the result for LO1 ⌘ LOQCD, since it is by definition always equal
to one, regardless of the value of µ. We want to stress that results in Tabs. 3 and 4 do not
show directly scale uncertainties; the value of µ is varied simultaneously in the numerator
and the denominator of �. The purpose of studying � as a function of µ will become clear
below when we discuss the different dependence in �NLO1

versus �NLO2
and �NLO3

.
From Tabs. 1 and 2 it can be seen that the LOQCD predictions, both at 13 and 100

TeV, have a scale dependence that is larger than 20%. Including the LOi contributions with
4We explicitly verified that vetoing only quark and gluons, but not photons, leads to differences below

the percent level. Moreover, from an experimental point of view, vetoing jets that are not isolated photons
would be simply an additional complication.
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Figure 1: tW ! tW scattering at the LHC. For definiteness, in the inset we show the diagrams
corresponding to tW� ! tW�.

To summarize, in certain two to two scattering processes the sensitivity to non-standard top-Z
couplings is enhanced at high energies, possibly overcoming the limited experimental precision.
The enhancement scales as c̄ p2/v2 ⇠ g2⇤p

2/⇤2, which can be much larger than one in models
where g⇤ � 1, without being in conflict with the e↵ective field theory expansion, that is p2 <
⇤2. This approach then takes advantage of the high scattering energies accessible at the LHC.
We explicitly demonstrate its e↵ectiveness in the next section, focusing on tW ! tW .

3 tW ! tW scattering as case study

Our goal is to study the scattering amplitudes involving tops (and/or bottoms) and W,Z or
h that increase at high energies, and to exploit this growth to probe top-Z interactions. After
examining all the possible combinations, we focus on the process tW ! tW . Our motivation
for this choice is threefold:

1. The amplitude for tW ! tW scattering grows with the square of the energy if either
the ZtLtL or the ZtRtR couplings deviate from their SM values.

2. The corresponding collider process, pp ! tt̄Wj, gives rise to same-sign leptons (SSL),
an extremely rare final state in the SM. This process arises at O(gsg3w) in the gauge
couplings, where gs denotes the strong coupling and gw any electroweak coupling, as
shown in Fig. 1.

3. The main irreducible background, pp ! tt̄W +jets at O(g2+n

s
gw) with n � 0 the number

of jets, is insensitive to the details of the top sector, because the W is radiated o↵ a light
quark.

The amplitude for two to two scattering processes of the type  1 + �1 !  2 + �2, where
 1,2 = {t, b} and �1,2 = {�± ⌘ (�1 ⌥ i�2)/

p
2, �3, h} are the longitudinal W±, Z or h, is most

conveniently expressed in the basis of chirality eigenstate spinors. Retaining only terms that
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NLO QCD + Jet merging +EW

[Buddenbrock, Ruiz, Mellado ’20]
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,! Moving in the right

direction but still tension

wrt ATLAS+CMS results.

[Tsnikos, Rikkert ’21]
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Strong indication that NNLO QCD corrections will bring better agreement with SM

predictions.

Slides taken from L.Reina’s talk at WG1 fall meeting 2021



Distributions

����

����

����

����

����

����
������ �� �	


�
��
��
��
��
�	

�� ���
��� ���

���	
��� ���
����

����

����

����

����

����
�	� 
	��

�
��
�
��
��
�	
��



�
�

�

�
�

�
�

�
�
�

�� �� ��� ��� ������� ����
�	���� ��	
�

��� ���
��� ���
��
���	
��� ���

�
�

�
�

�
�
�

�� �� ��� ��� ������� ����

����� ���� 	
� �
�

tt̄W±

LOQCD +NLOQCD LO + NLO LOQCD

LOQCD + NLOQCD

LOQCD +NLOQCD +NLOEW

Frederix, DP, Zaro ’17

100 TeV

����

����

����

����

���

��� ������ ��� ��	

�
��
��
��
��
�	

�� ���
��� ���

���	
��� ���

����

����

����

����

���

���

�
��
�
��
��
�	
��



�
�

�

�
�

�
�

�
�
�


� �� 
�� ��� 
������ ����
������ ���	�

��� ���
��� ���
��
���	
��� ���

�
�

�
�

�
�
�


� �� 
�� ��� 
������ ����

����� ���� 	
� �
�

����

����

����

����

���

��� ������ ��� ��	

�
��
��
��
��
�	

�� ���
��� ���

���	
��� ���

����

����

����

����

���

��� 
�� 	���

�
��
�
��
��
�	
��



�
�

�

��


���

��

�

�� 
� ��� 
�� ������� ����
������ ���	�

��� ���
��� ���
��
���	
��� ���

��


���

��

�

�� 
� ��� 
�� ������� ����

����� ���� 	
� �
�

64


