
ATLAS diboson polarisation studies

Luka SELEM On behalf of the ATLAS Collaboration

> Multi-Boson Interaction 2022 25/08/2022

Motivation for polarisation measurement

Previous measurements at LEP

Only **diboson process** accessible for such measurements: $e^+ e^- \rightarrow W^+W^-$

Single W boson polarisation measurements:

→ L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]

Joint-polarisation measurements:

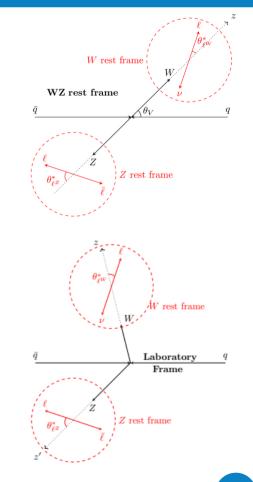
- → L3 [arXiv:0501036]: only correlations between bosons polarisation (decay planes)
- OPAL [arXiv:0009021]: almost 3σ for f00, but tension with Standard Model
- → DELPHI [arXiv:0908.1023]: not sensitive enough to f00

		Measured	Expected
$\sigma_{\rm TT}/\sigma$	total	$0.781 \pm 0.090 \pm 0.033$	0.572 ± 0.010
$\mid \sigma_{ m LL}/\sigma_{ m c}$	total	$0.201 \pm 0.072 \pm 0.018$	0.086 ± 0.008
$\sigma_{\mathrm{TL}}/\sigma$	total	$0.018 \pm 0.147 \pm 0.038$	0.342 ± 0.016

$$\bar{\rho}_{TT} = (67 \pm 8)\%,
\bar{\rho}_{LT} = (30 \pm 8)\%,
\bar{\rho}_{LL} = (3 \pm 7)\%.$$

OPAL results

Previous measurements at LHC


Single boson polarisation in WZ production

- **ATLAS** : in WZ rest frame, L = **36 fb**-1 [arXiv:1902.05759]
- **CMS** : in Laboratory frame, L = **137 fb**⁻¹ [arXiv:2110.11231]

Newest measurement by ATLAS [CDS:ATLAS-CONF-2022-053] in WZ production with full Run 2 dataset, 139 fb⁻¹

- Joint-polarisation fractions in WZ
- Single boson polarisation fractions
- Differential cross sections

First observation ever of longitudinal-longitudinal joint-polarisation state in diboson events

Challenges of this analysis

Method : Generate **polarisation templates** and extract polarisation fractions through a **template fit**

 Polarisation definition : Not Lorentz invariant ! Need to define a frame, template yields define pseudo-cross sections

Low statistics : Expected yield for WZ leptonic signal events with full Run-2 : ~ 17 000 events
 → Around 0.2 for f₀ of W or Z : ~3500 events
 → Around 0.2x0.2 = 0.04 for f_m : ~ 1000 events

Discriminating variable: should distinguish for both bosons polarisation at once
 3 x 3 =9 configurations, reduced to 4 by merging *Left* and *Right* in *Transverse* polarisation

- NLO template : many efforts to obtain polarised templates at NLO, unbiased

- Consistency : Single and Double boson polarisation fits should agree

Definition of polarisation fractions

Polarisation fractions are NOT Lorentz invariant

➔ Need to choose a frame

WZ rest frame for joint-polarisation and single boson polarisation (so-called Modified Helicity frame)

- Allow to meaningfully **compare** both
- Longitudinal fractions of both bosons have maximum decorrelation

Defined from the joint spin density matrix:

W rest frame

WZ inclusive selection

Experimental signature: $p p \rightarrow \ell \bar{\ell} \ell' \nu_{\ell'} + X \quad \ell = electron$

Variable	Total	Fiducial inclusive
Lepton $ \eta $		< 2.5
$p_{\rm T}$ of ℓ_Z , $p_{\rm T}$ of ℓ_W [GeV]		> 15, > 20
m_Z range [GeV]	66 - 116	$ m_Z - m_Z^{\text{PDG}} < 10$
$m_{\rm T}^W$ [GeV]		> 30
$\Delta \hat{R}(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$		> 0.2, > 0.3

Cross section and polarisation fractions extracted in the Fiducial phase space

Signal Region event selection

- Leptons reconstruction
- →3 increasingly tight selections : baseline, Zlepton and W-lepton

- **p**_z^v reconstruction:

→New DNN-based method

Trigger	At least one of five single lepton triggers fired
Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 27 { m GeV}$
Event cleaning	Reject corrupted or incomplete events and events with non-collision background jet
Primary vertex	Hard scattering vertex with at least two tracks
ZZ veto	Strictly less than 4 baseline leptons
N leptons	Exactly 3 leptons passing the Z -lepton selection
Z leptons	2 same flavor oppositely charged leptons passing Z -lepton selection
Mass window	$ m_{\ell\ell} - M_Z < 10 \text{GeV}$
W lepton	Remaining lepton passes W -lepton selection
W transverse mass	$m_{\rm T}^W > 30 { m GeV}$

Backgrounds

Irreducible (with 3 or more leptons): 18% of selected events

- →Estimated from Monte Carlo generation
- ZZ: 7.5% of selected events, main background (include QCD and EW production)
 MC rescaled during the fit by ~1.13 using a Control Region
- ttV: 4% of selected events

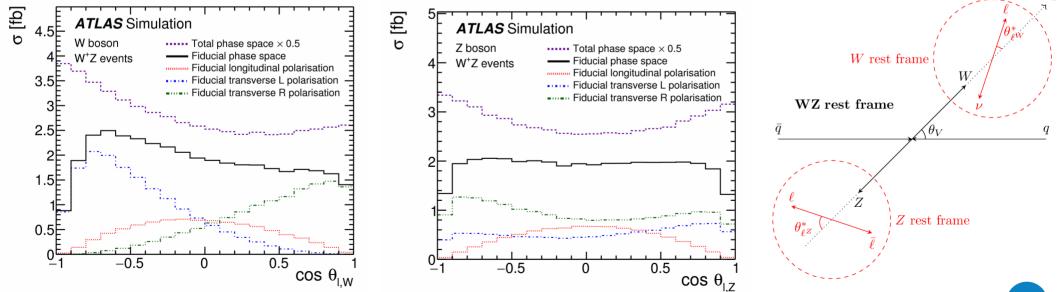
➔Total MC yield rescaled by 1.3 from Control Region estimation

 $-WZ \rightarrow \tau \parallel \rightarrow lv \parallel: 3\%$ of selected events.

→Scaled with the WZ signal post-fit event yields using fixed fraction of such events from MC

 Others: t+Z, Triboson VVV, Vector Boson Scaterring WZ production WZ EW⁶, Migrating γ* (from outside the total phase space M_z< 66 or M_z > 116)

Reducible (with at least 1 fake lepton): 5% of selected events

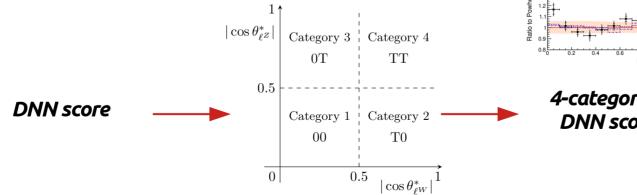

- « *Misidentified Leptons* » background mainly from **Z+γ, t tbar, Z+jets**
- Estimated by a data driven matrix method

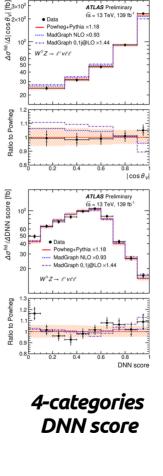
Discriminating variable for the fit

Goal: Perform a **binned maximum likelihood template fit** to extract simultaneously polarisation fractions

→ Need for a **discriminating variable** to be fitted

Single boson polarisation fraction measurement: **cosθ***_w and **cosθ***_z


Templates from 36 fb⁻¹ measurement [arXiv:1902.05759]


Variable for the joint-polarisation

Joint-polarisation fraction measurement:

- Analytical variable $|\cos\theta_v|$ not discriminant enough
- **Classification DNN** between all 4 joint-polarisation states: still **poorly discriminant between 0T and T0**

– Split DNN score for 00 in **4 categories** based on $\cos\theta^*$

Classification **DNN** input variables (by importance) $|y_{1W} - y_{7}|$ P₋wz P₋l,w $\Delta \phi(l^{W}, v)$ $\Delta \phi(l_1z, l_2z)$ $E_{\mathsf{T}}^{\mathsf{miss}}$ $\mathbf{P}_{\mathsf{T}}^{l2,Z}$ $\mathbf{P}_{\mathsf{T}}^{l1,Z}$

Obtaining MC polarisation templates

Need for NLO accurate templates

Polarisation templates directly from polarised MC generation

- Madgraph at LO + 0,1 jet (NLO real corrections) *MG0,1jet*

- Generate templates for 00, 0T, T0 and TT joint-polarisation states

➔ No Left and Right polarisation states: not used for single boson polarisation

Bias study:

 Perform detector level fit on various NLO inclusive pseudo-data MC samples using a polarisation template set

- Compare to the **truth values** of the fractions from MC

→ Bias found (10% to 50% on fraction value) using MG0,1jet templates

Need for NLO accurate polarisation templates

Methods for NLO accurate templates

Analytical reweighting

→ Method used in previous single boson polarisation measurement

A new method: Multi-dimensionnal reweighting with DNN output:

→ Possibility to reweight a distribution using a DNN output [arXiv: 1907.08209]

Reweight using theoretical predictions

- Collaboration with theorists Ansgar Denner & Giovanni Pelliccioli
- → Used our fiducial phase space and predictions for our classification DNN

Analytical reweighting

Use the analytical expression of the **angular differential cross section** of the decay of a **Spin 1** particle (angular momentum conservation)

➔ Fit of inclusive MC prediction allows to extract polarisation fractions

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta^*} = \frac{3}{8} \Big[f_R (1+\cos^2\theta^* + 2C_W\cos\theta^*) + f_L (1+\cos^2\theta^* - 2C_W\cos\theta^*) + 2f_0 \left(1-\cos^2\theta^*\right) \Big]$

Reweight NLO inclusive sample event-by-event to obtain polarised NLO accurate samples

- \rightarrow Reweight the distribution of variable V_1 : use **fractions in bins** of V_1
- → WARNING: V₁ must be independent of cosθ* (bosonic variable) such that bin cuts don't distort cosθ* distribution → validity of the fit formula

$$\mathbb{P}\left(V_1\left(v_1\right) \cap H = h_0\right) = \mathbb{P}\left(H = h_0 | V_1\left(v_1\right)\right) \mathbb{P}\left(V_1\left(v_1\right)\right)$$

Distribution of **variable V**₁ for a boson with **polarisation H=h**₀ **Polarisation fraction f_{ho}(v_1)** in bin around v_1 for variable V_1 = **applied weight** ! Distribution of **variable V**₁ for an **unpolarised** boson

Limits of analytical reweighting

Warning : a variable **V**₁ needs to be in the **conditional part of the weight** to have its reweighted distribution correctly modified to correspond to a polarised sample !

 $\mathbb{P}(H = h | V_1(v_1), V_2(v_2), ...) \equiv f_h(v_1, v_2, ...)$

Conditional part

- If completely **independent** from the conditional part, then distribution **unmodified**
- If completely **determined** by the conditional part, the distribution is **correctly modified**

Each variable in the conditional part = **new segmentations** of the Phase space

- -To **keep enough statistics** for the fits extracting fractions : choose **only one variable** V_1 **Here** $|\cos\theta_v|$, better variables could exist
- Polarised distribution of $\cos\theta^*$ already known

➔ incorporated without any more work or additional uncertainty thanks to Bayes formula

$$w_{W_0^+}(\cos\theta_{\ell W}^*, v_1) = \frac{f_0(v_1)\frac{3}{4}\left(1 - \cos^2\theta_{\ell W}^*\right)}{f_0(v_1)\frac{3}{4}\left(1 - \cos^2\theta_{\ell W}^*\right) + f_{\rm L}(v_1)\frac{3}{8}\left(1 - \cos\theta_{\ell W}^*\right)^2 + f_{\rm R}(v_1)\frac{3}{8}\left(1 + \cos\theta_{\ell W}^*\right)^2}$$

Use of analytical reweighting

Compared to direct MC generation:

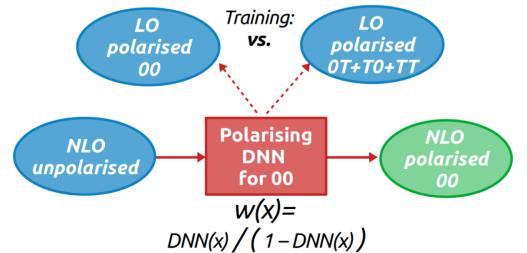
- Possible to have Left and Right polarisation templates
- NLO accurate, almost no bias
- Can only reweight the distribution of one discriminating variable (in addition to $\cos\theta_w^*$ and $\cos\theta_z^*$) for lack of statistic in MC samples
- Ony reweights bosonic variables: cannot use the classification DNN

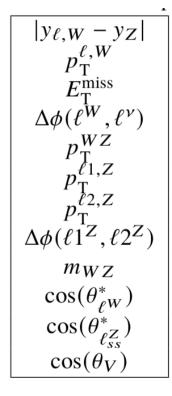
Used in single boson polarisation

 \rightarrow cos θ * as discriminating variables

In joint-polarisation can't be used:

- Classification DNN needed to have sensitivity
- \rightarrow |cosV| in 4 categories of cos* used at fiducial level for theory predictions from MC


DNN reweighting


Acts as a **multi-dimensionnal reweighting** of the input MC sample

This **new method** relies on two **assumptions**:

- Possibility to reweight with the used DNN [arXiv: 1907.08209]
- Factorisation of NLO effect and polarisation effects

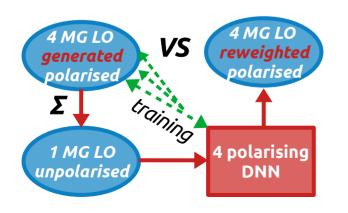
4 DNN **trained on polarised MG0,1jet** to discriminate one jointpolarisation states against the rest : event-by-event output used in **reweighting**

Reweighting DNNs input variables

DNN reweighting assumption

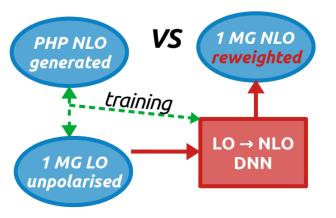
Possibility to reweight **event x** using a DNN trained to discriminate between type A (DNN(x) = 1) and type B (DNN(x) = 0)

$$w(x) = \frac{\mathrm{DNN}(x)}{1 - \mathrm{DNN}(x)} \approx \frac{p_B(x)}{p_A(x)}$$


 \rightarrow

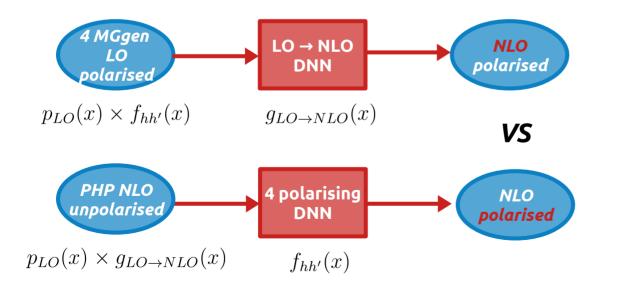
: morph distribution of A in B

→Two closure tests to validate this assumption


A DNN to discriminate 1 polarised MadGraph against the 3 others

→ Weight from unpolarised to polarised

A DNN to discriminate between inclusive **LO** MadGraph and **NLO** Powheg+Pythia samples


→ Weight from LO to NLO

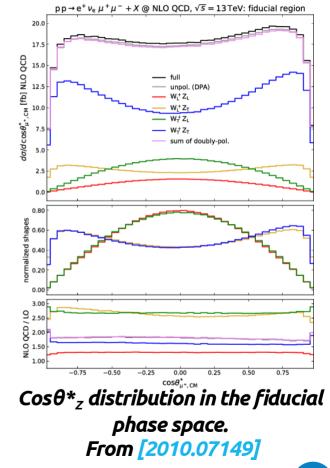
Validation of factorisation assumption

Applying polarising DNN weight to a **NLO inclusive** sample turns it in a **NLO polarised** sample if the distribution *p(x)* can be factorised :

$$p_{NLO}^{hh'}(x) \propto p_{LO}(x) \times f_{hh'}(x) \times g_{LO \to NLO}(x)$$

Two ways to obtain NLO polarised sample

 Comparison provides a test of the factorisation assumption


→ Test passed !

Reweighting to theory prediction

In collaboration with theorists **A. Denner, G. Pelliccioli** : Theoretical calculations performed in the fiducial phase space [arXiv:2010.07149]

- NLO polarised predictions for our classification DNN score
- Reweight MG0,1jet polarised to NLO at parton level event-by-event with k-factor:

$$K_{\rm MG\,p.s.} = \frac{\rm MoCaNLO_{pol.}^{parton}}{\rm MADGRAPH_{ref,pol.}^{parton}}$$

Joint-polarisation measurement

Choice of NLO accurate template set

Direct polarised Monte Carlo generation:

→ Big **bias**, from **10% to 50%** of the fraction values

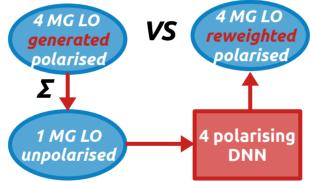
Analytical reweighting:

→ Cannot be used with the **Classification DNN**

Reweighting MG polarised predictions to theoretical predictions

- Still some **bias**, but **reduced to ~10%** of the fraction value
- Used as Modelling uncertainty for alternative polarisation template set choice

Multi-dimensionnal reweighting with DNN output:


- Found to be the **least biased method** of all tried (almost no bias)

➔ Used as baseline

DNN reweighting uncertainty

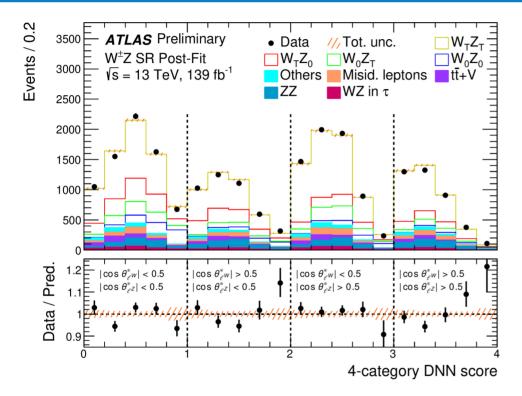
DNN reweighting uncertainty:

- Sum MG0,1jet at LO polarised to obtain an inclusive MG0,1jet at LO sample
- Reweight it with DNN to repolarise and compare

➔ Small non-closure used as systematic uncertainty

Joint-polarisation Template Fit

Perform template fit on data at detector level with :


- DNN reweighted NLO accurate polarisation templates
- All backgrounds MC samples and associated systematic uncertainties
- Particle reconstruction systematic uncertainty
- Modelling uncertainties
- PDF and QCD scale (7 point variations) systematic uncertainties for polarisation templates and ZZ background
- ➔ ZZ Control region (reverse 4 baseline lepton veto) to constrain ZZ theory systematic uncertainties

Fit parameters of interest are f_{00} , f_{0T} , f_{TT} and N_{tot} the number of signal event extracted at particle level in the fiducial phase space

Decouple overall normalisation from polarisation fraction shape effects

→
$$\mathbf{f}_{\tau 0} = \mathbf{1} - \mathbf{f}_{00} - \mathbf{f}_{0T} - \mathbf{f}_{\tau T}$$

Joint-polarisation Template Fit

→Correct agreement of the fitted templates with data
 →ZZ CR rescales and constrain uncertainty on ZZ background

	Signal Region				
	\Pr	e-fit	Post-fit		
WZ in τ	620	± 60	$630 \pm $	60	
ZZ	1420	± 120	$1630 \pm $	50	
$t\bar{t} + V$	870	± 130	830 \pm	120	
Misid. leptons	1170	± 230	$1010 \pm$	220	
Others	800	± 90	$790 \pm$	90	
W_0Z_0	920	± 40	$1190 \pm$	160	
$W_0 Z_{\mathrm{T}}$	2670	± 50	$1900 \pm$	500	
$W_{\mathrm{T}}Z_{0}$	2670	± 60	$3100 \pm$	400	
$W_{\mathrm{T}}Z_{\mathrm{T}}$	10200	± 230	$10900 \pm$	600	
Total MC	21400	\pm 600	$21950 \ \pm$	170	
Data	— 21936			3	
		ZZ Con	trol Region		
		e-fit	Post	-fit	
WZ	35.6	± 1.9	9 35.9	± 1.9	
ZZ	2030	± 150	2290	± 50	
$t\bar{t} + V$	153	± 23	144	± 22	
Misid. leptons	8.5	\pm 3.4	4 8.7	± 3.4	
Others	38	\pm 8	39	\pm 8	
Total MC	2260	± 160	2510	\pm 50	
Data — 2554					

25

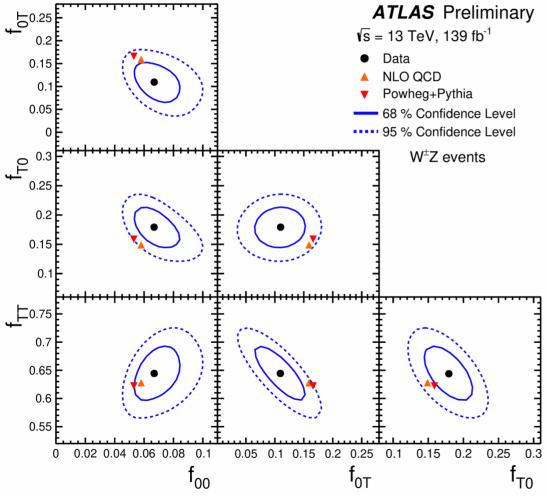
Joint-polarisation fractions

Theory predictions

	Data	Powheg+Pythia NLO QCD	
		W [±] Z Denner&Pelliccioli [arXiv:2010.07149]	
$\begin{array}{c} f_{00} \\ f_{0\mathrm{T}} \\ f_{\mathrm{T0}} \\ f_{\mathrm{T0}} \\ f_{\mathrm{TT}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
		W^+Z	1
$\begin{array}{c} f_{00} \\ f_{0\mathrm{T}} \\ f_{\mathrm{T0}} \\ f_{\mathrm{T0}} \\ f_{\mathrm{TT}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		W^-Z	
$\begin{array}{c} f_{00} \\ f_{0\mathrm{T}} \\ f_{\mathrm{T0}} \\ f_{\mathrm{T0}} \\ f_{\mathrm{TT}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

All joint-polarisation states observed

- Significance on f_{00} at 7.1 σ
- Significance on $f_{\tau\tau}$ and $f_{\tau\sigma}$ >5\sigma


Measurement performed as well separating by the W charge

- Significance on f_{00} at 6.9 σ in W+Z
- Significance on f_{00} at 4.1 σ in W-Z

No major difference visible in the charge break down (baring 1σ difference in fT0/f0T)

26

Joint-polarisation CL regions

Strong correlations between simultaneously extracted fractions

- Confidence Level regions represented for fractions 2 by 2
- No tension with theory: better than 2σ agreement

Test of independence of fractions of W and Z by reparametrising :

$$f_{0T} = f_0^W - f_{00},$$

$$f_{T0} = f_0^Z - f_{00},$$

$$f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$$

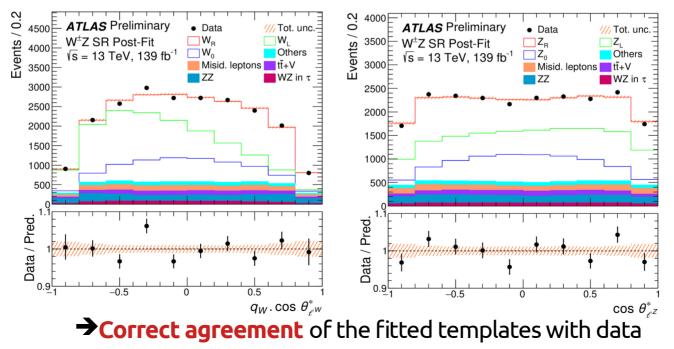
$$R_c = \frac{f_{00}}{f_0^W f_0^Z}$$

 \Rightarrow R_c = 1.54 ± 0.35 (if independent, R_c=1)

Uncertainty breakdown

	f_{00}	$f_{0\mathrm{T}}$	f_{T0}	$f_{\rm TT}$	
e energy scale and id. efficiency	0.00019	0.0009	0.0012	0.0020	
μ energy scale and id. efficiency	0.0004	0.0004	0.0004	0.0008	
$E_{\rm T}^{\rm miss}$ and jets	0.0017	0.0021	0.0020	0.0023	
Pile-up	0.00031	0.00026	0.0007	0.0010	
Misidentified lepton background	0.0012	0.0026	0.0013	0.0016	NLO QCD modelling
ZZ background	0.0004	0.00027	0.0005	0.0004	
Other backgrounds	0.0016	0.0026	0.0021	0.0025	Background estimation
Parton Distribution Function	0.00017	0.0029	0.00014	0.0028	_
QCD scale	0.00010	0.014	0.0014	0.012	
Modelling	0.005	0.007	0.005	0.008	
Total systematic uncertainty	0.005	0.017	0.006	0.016	– Statistical uncertainties at
Luminosity	0.00015	0.00026	0.0004	0.00004	the same level as
Statistical uncertainty	0.007	0.016	0.019	0.019	systematic uncertainties
Total	0.010	0.029	0.023	0.032	28

Single boson polarisation measurement


Single boson template fit

Template fit on data at detector level as for joint-polarisation

–Discriminating variables $cos\theta_w$ and $cos\theta_z$, polarisation templates from analytical reweighting

-Modelling uncertainties

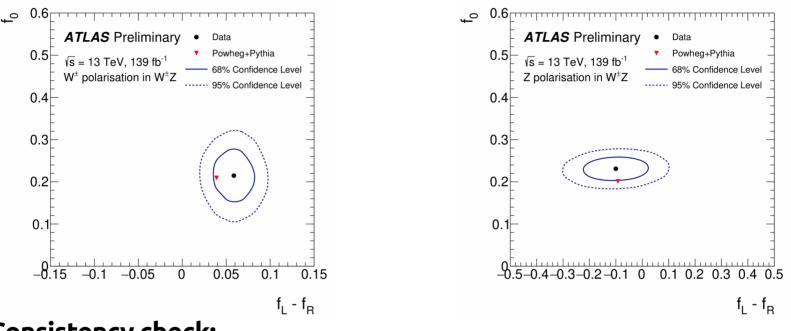
- Alternative Monte Carlo Sherpa
- Reweighting uncertainty (similar to joint-polarisation DNN reweighting uncertainty)

Single boson polarisation fractions

		f_0	Denner&Pelliccioli [arXiv:2010.07149]	$f_{ m L} - f_{ m R}$		
	Data	Powheg+Pythia	NLO QCD	Data	Powheg+Pythia	
W in W^+Z	0.23 ± 0.05	0.2044 ± 0.0024	0.211 ± 0.002	0.071 ± 0.023	0.0990 ± 0.0015	
W in W^-Z	0.19 ± 0.05	$0.217 \hspace{0.2cm} \pm \hspace{0.2cm} 0.004$	$0.225~\pm~0.001$	0.026 ± 0.027	-0.0491 ± 0.0020	
W in $W^{\pm}Z$	0.22 ± 0.04	$0.2094\ \pm\ 0.0016$	$0.217~\pm~0.001$	0.059 ± 0.016	$0.0390~\pm~0.0011$	
Z in W^+Z	0.223 ± 0.025	$0.1971\ \pm\ 0.0019$	0.206 ± 0.002	-0.20 ± 0.10	-0.217 ± 0.006	
Z in W^-Z	0.240 ± 0.029	$0.2065 ~\pm~ 0.0023$	$0.211~\pm~0.001$	0.10 ± 0.13	$0.092 ~\pm~ 0.007$	
Z in $W^{\pm}Z$	0.231 ± 0.019	$0.2009~\pm~0.0014$	0.208 ± 0.001	-0.10 ± 0.08	-0.092 ± 0.005	

$f_{\scriptscriptstyle 0}$ and $f_{\scriptscriptstyle L}\text{-}f_{\scriptscriptstyle R}$ measured for W and Z boson

 $-\,f_{0}$ mesured with 5σ significance even in charge break-down


-No tension with theory

→ Small tension for f_L - f_R in W-Z at **2.8** σ

The charge of the W impacts significantly $f_L - f_R$, less so for f_0

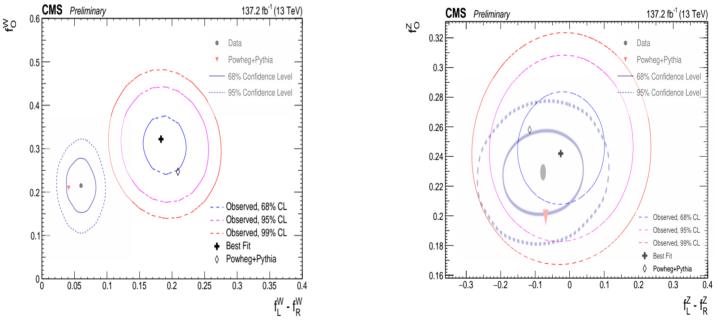
- \rightarrow Less than 1σ difference for f_0
- \rightarrow More than 2σ difference for $\mathbf{f}_{L}-\mathbf{f}_{R}$

Single boson polarisation CL region

Consistency check:

- $-\,f_{\scriptscriptstyle 0}{}^w$ and $f_{\scriptscriptstyle 0}{}^z$ measured using reparametrisation in joint-polarisation fit
- Agreement within 1σ with the single boson polarisation fit

$$f_{0T} = f_0^W - f_{00},$$


$$f_{T0} = f_0^Z - f_{00},$$

$$f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$$

CMS results

CMS published results on full Run 2 data for single boson polarisation fractions

- Not the same frame: **central values not comparable**
- Uncertainties somewhat smaller for W fractions in ATLAS, similar sensitivity for Z fractions
- Again, no tension with theory

<u>CMS results</u> for W (left) and Z (right) Previously presented CL regions in transparency

Uncertainty Breakdown

	W^{\pm} in $W^{\pm}Z$		Z in	$W^{\pm}Z$
	f_0	$f_L - f_R$	f_0	$f_L - f_R$
e energy scale and id. efficiency	0.0029	0.00030	0.0027	0.0005
μ energy scale and id. efficiency	0.004	0.0018	0.0015	0.0007
$E_{\rm T}^{\rm miss}$ and jets	0.004	0.0011	0.0006	0.0027
Pile-up	0.0029	0.0015	0.0024	0.0029
Misidentified lepton background	0.007	0.00033	0.0033	0.0013
ZZ background	0.0010	0.00028	0.0012	0.0025
Other backgrounds	0.0018	0.0005	0.0014	0.0011
Parton Distribution Function	0.0011	0.0011	0.00010	0.0005
QCD scale	0.012	0.0025	0.0004	0.005
Modelling	0.025	0.0012	0.004	0.018
Total systematic uncertainty	0.030	0.004	0.007	0.019
Luminosity	0.0018	0.00004	0.00007	0.00018
Statistic uncertainty	0.028	0.015	0.018	0.08
Total	0.04	0.016	0.019	0.08

f₀**w systematic** at the same level as **statistical**

Others statistically dominated:

- → f_L-f_R very small, hard to extract
- Better controlled systematics for Z boson (no neutrino)

Conservative modelling

uncertainty as **main** uncertainty

Unfolding of polarisation sensitive variable

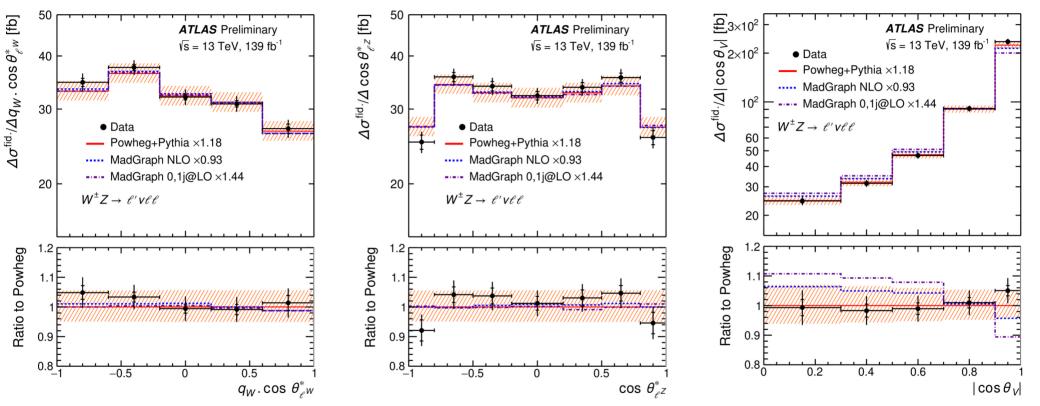
Unfolded distributions

Cross section of inclusive WZ production in the fiducial phase space with leptonic decay :

 \rightarrow Obtained from N_{tot} parameter of the fit, at the **Born level**

 $\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 64.6 \pm 2.1 \text{ fb}$ **VS NNLO QCD SM prediction** = $64.0^{+1.5}_{-1.3} \text{ fb}$ *With MATRIX [arXiv:1703.09065]*

➔ Perfect agreement, similar precision


Iterative bayesian unfolding of **polarisation sensitive variables**:

 $\rightarrow \cos\theta_{W}^{*}, \cos\theta_{Z}^{*}, |\cos\theta_{V}|$

Compared to Born level **predictions** from

- NLO inclusive MC sample: Powheg+Pythia and MadGraph5_aMC@NLO+Pythia
- Sum of LO polarised MC MG0,1jet samples
- → All **rescaled to integral NNLO QCD** cross section prediction

Unfolded distributions

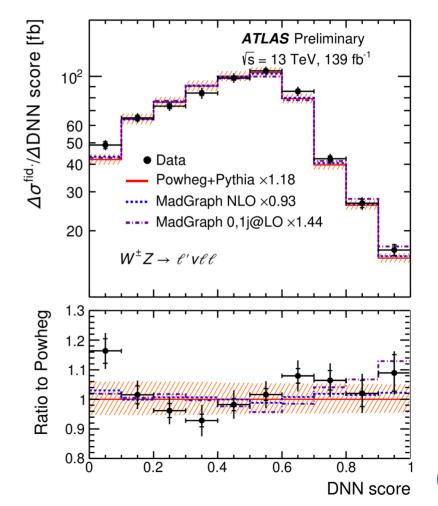
- Good agreement of data with NLO MC

– MG0,1jet at **LO** fails with |cosV| because it has strong **NLO** dependence (Denner&Pelliccioli theoretical calculations)

37

Unfolding the DNN

Classification DNN to be made public


-**Classification DNN** trained at detector level on Madgraph polarised samples

– Uses **low level variables, not p_z^v related**, to be independent from the method chosen for its reconstruction

Used by theorist Denner&Pelliccioli to compute particle level predictions

Unfolded differential cross section

Particle level DNN score feeds the same DNN with particle level variables

CONCLUSION

Pioneering methods have been developped

- Classification DNN used by theorist for calculation and unfolded
- **DNN reweighting method** found very promising
- \rightarrow Could be used in other diboson studies

Allowing this measurement:

- First observation ever of all four joint-polarisation states in diboson events
- Evidence for correlation between the two bosons polarisations
- Improvement on the single boson polarisation fractions measurement
- Unfolded distributions for polarisation sensitive variables

PROSPECTS

Apply these methods to **other diboson processes**

 \rightarrow ZZ, same sign WW

Perform the same measurement in **more restrictive phase spaces**, with high p_T^z

- 00 enhanced phase space + Radiation Zero Amplitude effect
- Enhanced sensibility to dimension 6 EFT operators

Ultimately: Longitudinal-Longitudinal Vector Boson Scattering observation