

Zγ VBS measurements with ATLAS full Run2

Qibin LIU

Tsung-Dao Lee Institute, Shanghai Jiao Tong Univ.

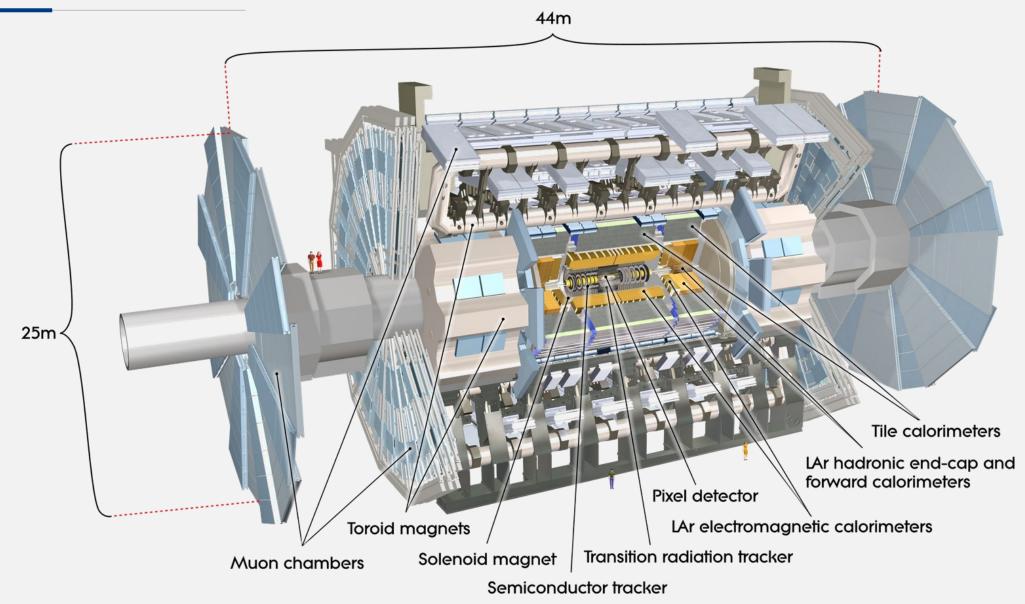
On behalf of the ATLAS collaboration

contents

01. ATLAS Detector

02. Vector Boson Scattering

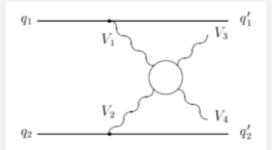
03. ATLAS Zγ VBS study

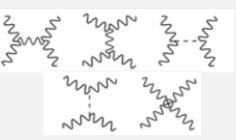

04. $Z(\rightarrow II)\gamma$ VBS analysis

05. EW $Z(\rightarrow vv)\gamma$ analysis

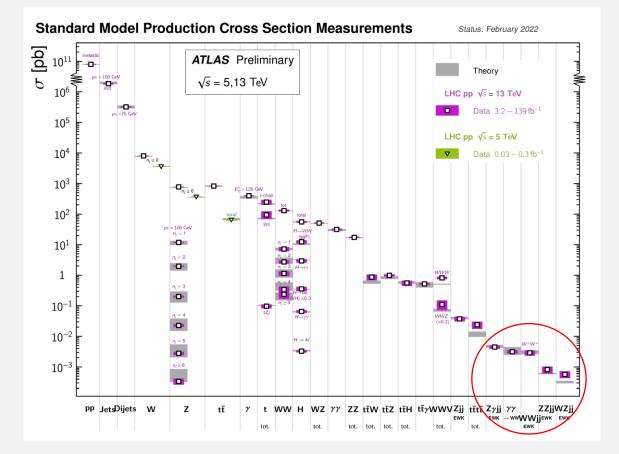
06. Summary

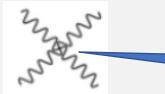
• ATLAS detector





• Vector Boson Scattering




- Rare but vital in both SM and BSM
 - Cross-section ~fb : Challenging for analysis
 - Rich physics contents

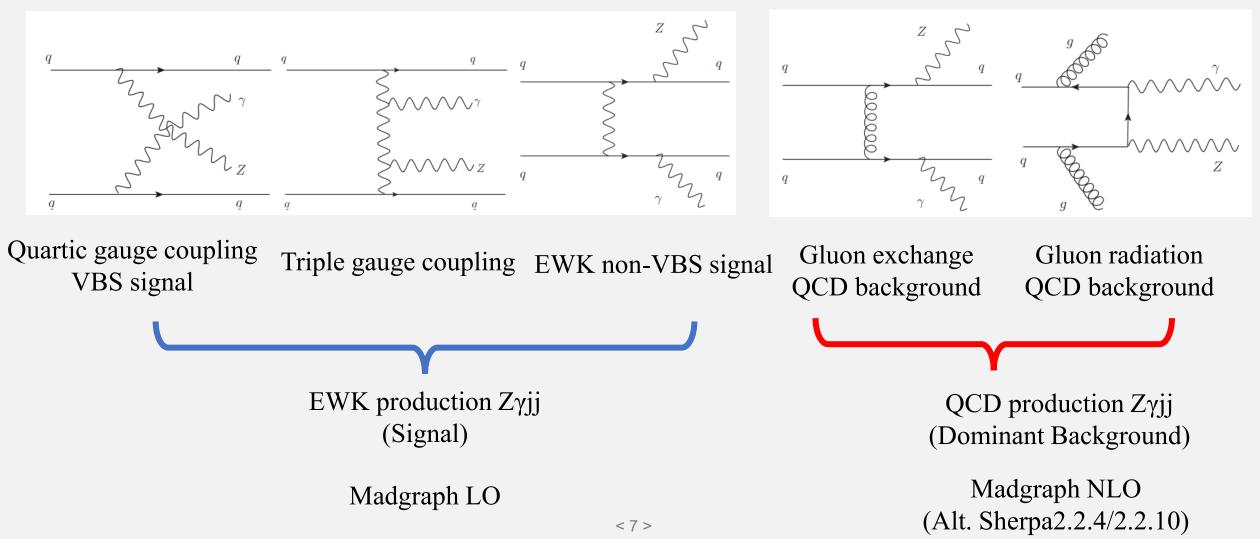
- Key process to probe the mechanism of electroweak symmetry breaking
- Sensitive to many new physics scenarios
- Crucial inputs for EFT study like aQGC

(anomalous) Quartic Gauge Coupling Higgs can also be involved

• ATLAS VBS Zyjj analysis with full Run2

- Pure VBS and quartic coupling is not accessible (due to gauge invariance)
 - > Typical study of the EWK production of VVjj process
 - > 2 energetic jets with large angle ($\Delta \eta$), high invariant mass (m_{jj})
 - Little hadronic activity in the rapidity gap \rightarrow distinctive feature of VBS VVjj
- EWK Zy process observed and measured with ATLAS full Run2 data
 - > Leptonic decay of Z:
 - **≻** EWK $Z(\rightarrow ll)$ γ*jj* : observed at 10σ
 - > Invisible decay of Z:
 - ≻ EWK $Z(\rightarrow \nu\nu)\gamma jj$ w/ photon pT ∈ [15,110] GeV: observed at 5.2σ
 - ▶ EWK $Z(\rightarrow \nu\nu)\gamma jj$ w/ photon pT >150 GeV : to be public
- BSM topics discussed : aQGC, dark photon, invisible decay of Higgs and so on

	Obs (Exp) sign.	Fid. XS of EW-Zγjj / fb	Ref
$Z(\rightarrow ll)\gamma jj$ VBS analysis	10σ (11σ)	4.49±0.40 (stat.)±0.42 (syst.)	ATLAS-CONF-2021-038
VBF+MET+Photon (EW- $Zvv\gamma jj w/ p_T^{\gamma} \in [15,110 GeV]$)	5.2σ (5.1σ)	1.31±0.20 (stat.)±0.20 (syst.)	<u>Eur. Phys. J. C 82 (2022) 105</u>
$Z(\rightarrow vv)\gamma jj$ VBS analysis $(p_T^{\gamma} > 150 GeV)$		(To be public)	



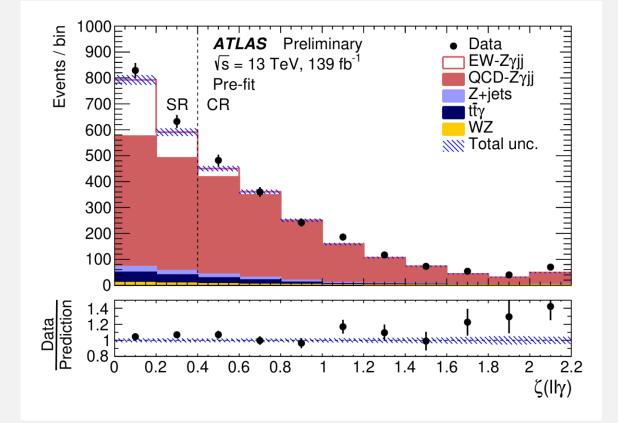
• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Introduction

- EW production Zγjj studied in the eeγjj and μμγjj channels using 139/fb data
- Dominant background from QCD production Zγjj

• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Selection

Single and di-lepton trigger used in analysis	
25GeV photon <i>E_T</i> requirement	Lepton $p_{\mathrm{T}}^{\ell} > 20, 30 (\text{leading}) \text{ GeV}, \eta_{\ell} < 2.47$ $N_{\ell} \ge 2$
→ reduce significantly Z+jets and pile-up background	$\blacktriangleright Photon \qquad E_{\rm T}^{\gamma} > 25 \text{ GeV}, \eta_{\gamma} < 2.37$
Remove low-mass resonance by requiring large m_{II} $<$	$E_{\rm T}^{cone20} < 0.07 E_{\rm T}^{\gamma}$ $\Delta R(\ell, \gamma) > 0.4$
	Jet $p_{\mathrm{T}}^{jet} > 50 \text{ GeV}, y_{jet} < 4.4$ $ \Delta y > 1.0$
Remove the FSR photon by requiring large $ m_{ll} + m_{ll\gamma} $ $$	$m_{jj} > 150 \text{ GeV}$ remove jets if $\Delta R(\gamma, j) < 0.4$ or if $\Delta R(\ell, j) < 0.3$
Z _γ centrality cut to separate EWK and QCD Z _γ jj process	Event $m_{\ell\ell} > 40 \text{ GeV}$
$\zeta(Z\gamma) = \left \frac{y_{Z\gamma} - (y_{j1} + y_{j2})/2}{(y_{j1} - y_{j2})} \right $ SR CR1	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$ $\zeta(\ell\ell\gamma) < 0.4$ $N_{jets}^{gap} = 0$
0 0.4 Centrality	
No jet in rapidity gap of two jets \rightarrow increase S/B	
	< 8 >

• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Background



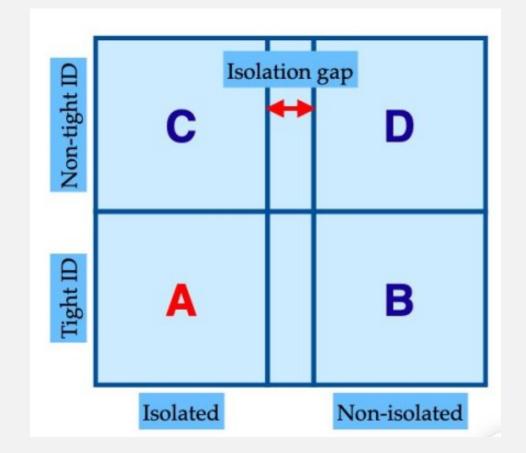
> QCD Zγjj: Estimated from MC

• Norm. fitted in SR and CR1 ($\zeta_{Z\gamma}$ cut inverted)

Z+jets : Data-driven

- Normalization and shape extracted from data
- 2D Sideband method : photon ID and isolation
- > tt γ : Estimated from MC (Madgraph LO)
 - Scale factor of 1.44 and in agreement with [1]
 - Validated with data in standalone $e_{\mu\gamma}\,CR$
- > WZjj: Estimated from MC (Sherpa/Madgraph)

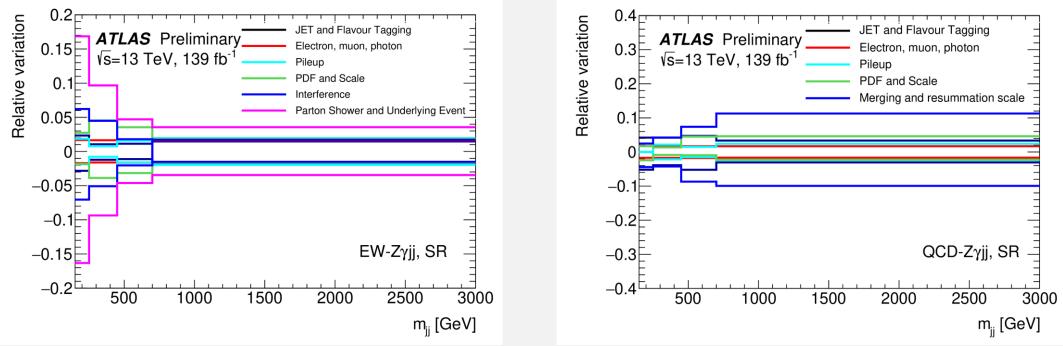
• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Background



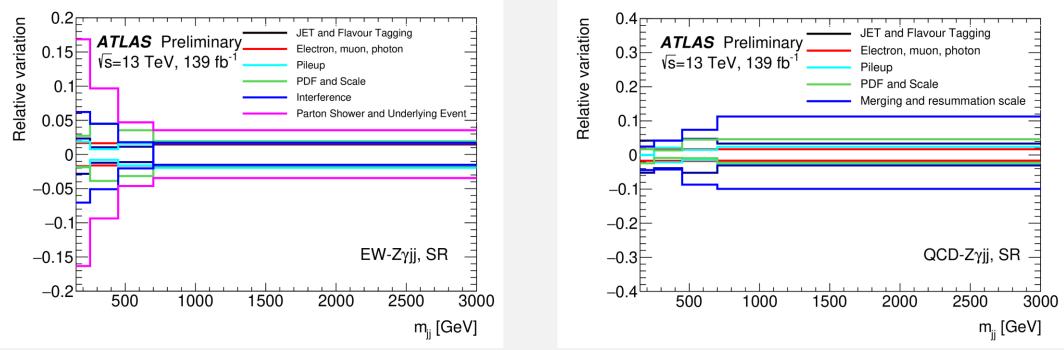
> QCD $Z\gamma jj$: Estimated from MC

• Norm. fitted in SR and CR1 ($\zeta_{Z\gamma}$ cut inverted)

> Z+jets : Data-driven


- Normalization and shape extracted from data
- 2D Sideband method : photon ID and isolation
- > tt γ : Estimated from MC (Madgraph LO)
 - Scale factor of 1.44 and in agreement with [1]
 - Validated with data in standalone $e_{\mu\gamma}\,CR$
- > WZjj: Estimated from MC (Sherpa/Madgraph)

• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Systematics

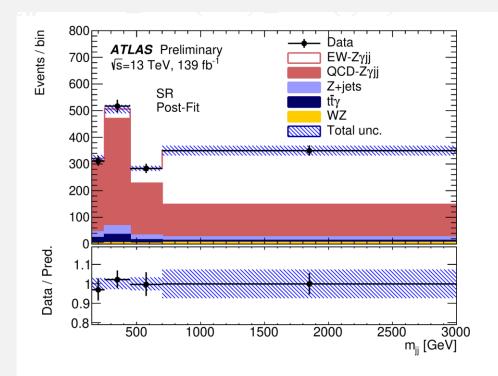

- Experimental Systematics:
 - Lepton, Photon, Jet and PRW
 - Typically <2% and largest from jet energy calibration and response
 - Correlated among all the regions and processes
- Background Normalization:
 - 35% uncertainty for Z+jets from Data-driven
 - 15% (20%) uncertainty for tt_{γ} (WZ) estimated from QCD scale and PDF

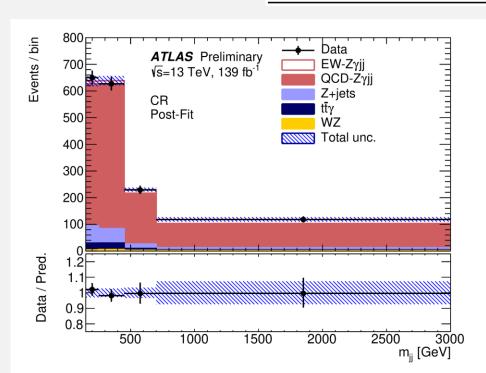
• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Systematics

- Theoretical Systematics:
 - Scale and PDF variation for both EW- and QCD- Zγjj
 - Parton showering and underlying event model variation of EW-Zγjj
 - Only shape difference considered
 - Merging (CKKW) and resummation (QSF) scale variation of QCD-Zγjj
 - Estimated based on Sherpa2.2.10 LO samples
 - Interference between EW- and QCD- $Z\gamma jj$ considered as an extra uncertainty

• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Signal Extraction

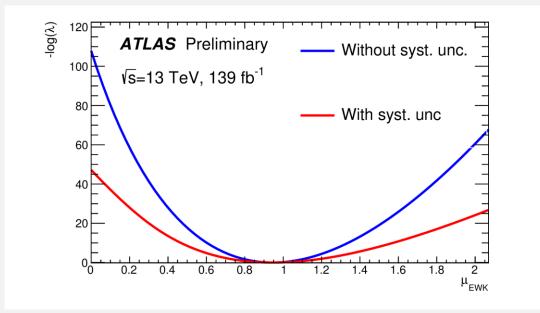
- Maximum likelihood fit of m_{jj} on SR and CR simultaneously to extract
 - Signal strength for EW-Z γ jj : $\mu_{EW} \equiv \frac{\sigma_{EW}^{meas.}}{\sigma_{EW}^{exp.}}$ correlated between SR and CR
 - Two norm. factors for QCD- $Z\gamma jj$: decorrelated between SR and CR \rightarrow CR only used to validate the shape and constrain the systematics


	SR	CR1
μ_{EWK}	\checkmark	\checkmark
μ^{SR}_{QCD}	\checkmark	
μ_{QCD}^{CR1}		\checkmark


• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Signal Extraction

Sample	SR	CR
$N_{EW-Z\gamma jj}$	300 ± 36	55 ± 7
$N_{QCD-Z\gamma jj}$	987 ± 55	1352 ± 60
$N_{t\bar{t}\gamma}$	72 ± 11	59 ± 9
N_{WZ}	17 ± 3	14 ± 3
N_{Z+jets}	85 ± 30	143 ± 43
Total	1461 ± 38	1624 ± 40
N_{obs}	1461	1624

- Maximum likelihood fit of m_{ii} on SR and CR simultaneously to extract
 - Signal strength for EW-Z γ jj : $\mu_{EW} \equiv \frac{\sigma_{EW}^{meas.}}{\sigma_{EW}^{exp.}}$ correlated between SR and CR
 - Two norm. factors for QCD- $Z\gamma jj$: decorrelated between SR and CR \rightarrow CR only used to validate the shape and constrain the systematics
- The post-fit distribution shows good data/MC agreement



• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Signal Extraction

- Maximum likelihood fit of m_{jj} on SR and CR simultaneously to extract
 - Signal strength for EW-Z γ jj : $\mu_{EW} \equiv \frac{\sigma_{EW}^{meas.}}{\sigma_{EW}^{exp.}}$ correlated between SR and CR
 - Two norm. factors for QCD- $Z\gamma jj$: decorrelated between SR and CR \rightarrow CR only used to validate the shape and constrain the systematics
- The post-fit distribution shows good data/MC agreement
- $\mu_{EW} = 0.95 \pm 0.08 (stat) \pm 0.11 (syst)$

EW- $Z(\rightarrow ll)\gamma jj$ observed with more than 10σ (11 σ expected)

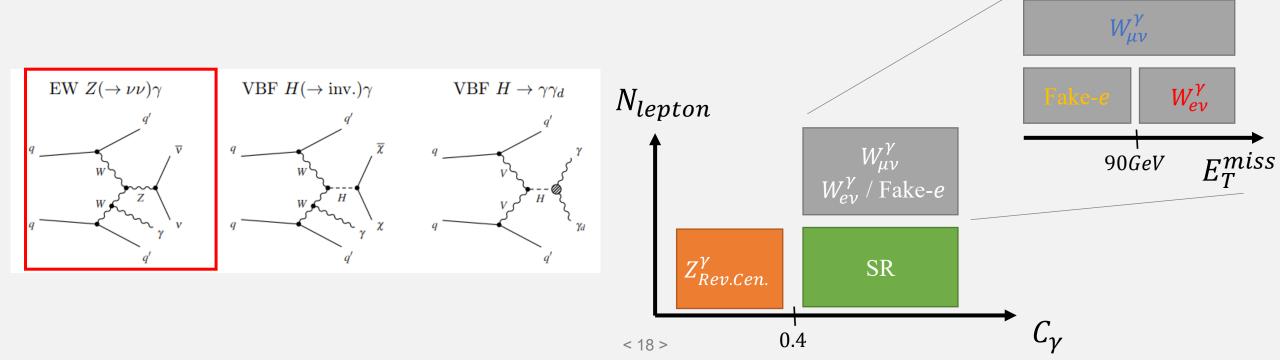
• $Z(\rightarrow ll)\gamma jj$ VBS analysis : Measurement of Cross-section

1	Source	Size $[\%]$
	Electron/photon calibration	± 0.3
	Photon	± 0.3
	Backgrounds	± 1.0
	Electron	± 1.1
	Flavour tagging	± 1.1
	Muon	± 1.1
	MC stat.	± 1.4
	Pileup	± 2.6
	Jets	± 4.7
	QCD - $Z\gamma jj \text{ modelling}$	$^{+4.8}_{-4.3}$
	EW - $Z\gamma jj \text{ modelling}$	$^{+5.7}_{-4.6}$
	Data stat.	\pm 8.8
1	Total	$^{+13.4}_{-12.6}$

- Fiducial cross-section of EW-Z γ jj measured from μ_{EW} :
 - $\sigma_{EW} = 4.49 \pm 0.40 \text{ (stat)} \pm 0.42 \text{ (syst) } fb$
 - $\sigma_{EW}^{pred} = 4.73 \pm 0.01 \text{ (stat)} \pm 0.15 \text{ (PDF)}_{-0.22}^{+0.23} \text{ (scale)} fb$

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.	Total
$\Delta\sigma_{EW}/\sigma_{EW}~[\%]$	± 9	± 1	±1	± 5	$^{+6}_{-5}$	$^{+5}_{-4}$	± 13

- Fid. cross-section of EW+QCD Zγjj measured in SR-only:
 - $\sigma_{EW+QCD} = 20.6 \pm 0.6 (stat)^{+1.2}_{-1.0} (syst) fb$
 - $\sigma_{EW+QCD}^{pred} = 20.4 \pm 0.1 \text{ (stat)} \pm 0.2 \text{ (PDF)}_{-2.0}^{+2.6} \text{ (scale)} fb$



EVERTS (→**VV**)**Y***jj* Eur. Phys. J. C 82 (2022) 105

• Observation of EW $Z(\rightarrow \nu\nu)\gamma jj$: Overview

- Analysis originally designed to search for $H(\rightarrow inv)\gamma$ with VBF+MET+Photon signature
- EW-production of $Z(\rightarrow vv)\gamma jj$ studied for $p_T^{\gamma} \in [15, 110]$ GeV with dedicated regions
- Dominant background from QCD-Zγjj and W(lv)γ+jets and controlled with CRs
 - $W_{\mu\nu}^{\gamma}, W_{e\nu}^{\gamma}$ and Fake-*e* region: allowing one lepton (or jet fake electron)
 - $Z_{Rev.Cen.}^{\gamma}$ CR: low photon centrality (reversed) where QCD-Zyjj enriched
- Signal extracted from simultaneous fitting across all the regions

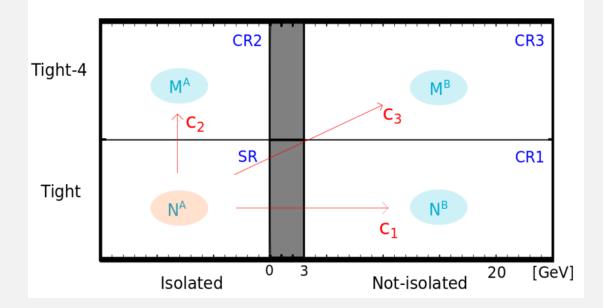
• Observation of EW $Z(\rightarrow \nu\nu)\gamma jj$: Selection

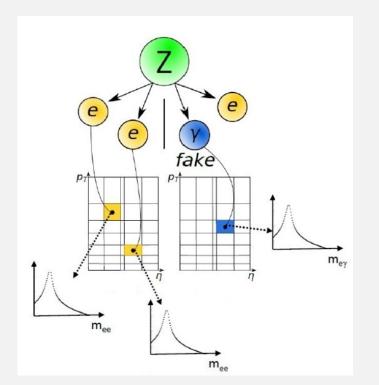
Centrality Cut
 Photon centrality: C_γ
 3rd jet centrality: C₃

Observable	Requirements
$N_{\rm jet}$ with $p_{\rm T} > 25 {\rm ~GeV}$	≥ 2
$ \eta(j_{1,2}) $	< 4.5
$p_{\rm T}(j_1)$ [GeV]	> 60
$p_{\rm T}(j_2)$ [GeV]	> 50
$\Delta R(j,\ell)$	> 0.4
$ \Delta \eta_{\rm ii} $	> 3.0
C_3	< 0.7
m_{jj} [TeV]	> 0.5
truth- $E_{\rm T}^{\rm miss}$ [GeV]	> 150
$\Delta \phi$ (truth- \vec{E}_{T}^{miss}, j_i)	> 1.0
$p_{\rm T}(\gamma) [{\rm GeV}]$	> 15, < 110
$ \eta(\gamma) $	< 2.37
$E_{\mathrm{T}}^{\mathrm{cone20}}/E_{\mathrm{T}}^{\gamma}$	< 0.07
$\Delta R(\gamma, \text{jet-or-}\ell)$	> 0.4
C_{γ}	> 0.4
$\Delta \phi$ (truth- $\vec{E}_{T}^{miss}, \gamma$)	> 1.8
N_ℓ with $p_{\rm T} > 4$ GeV and $ \eta < 2.47$	0

< 19 >

 $C_{\gamma} = \exp\left[-\frac{4}{(\eta_1 - \eta_2)^2} \left(\eta_{\gamma} - \frac{\eta_1 + \eta_2}{2}\right)^2\right]$


$$C_3 = \exp\left[-\frac{4}{(\eta_1 - \eta_2)^2} \left(\eta_3 - \frac{\eta_1 + \eta_2}{2}\right)^2\right]$$



• Observation of EW $Z(\rightarrow \nu\nu)\gamma jj$: Fake Photon Background

- Jet fakes photon enter SR e.g. from Z(vv)+jets
 - Estimated using data-driven method based on isolation and tight ID
 - ~ 1% of SR and 50% uncertainty assigned mainly due to MC statistics
- Electron fakes photon from e.g. W(ev)+jets:
 - measured by comparing ee and e_{γ} rates in Z peak
 - ~ 6% in EW $Z(\rightarrow \nu\nu)\gamma$ signal region and uncertainty ranging from 15-30%

• Observation of EW $Z(\rightarrow \nu\nu)\gamma jj$: Uncertainties

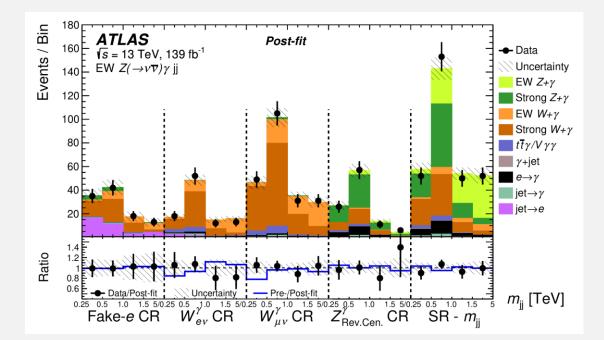
- Dominated by statistical unc. in all channels
- Large systematic variation from modelling:
 - Scale var. 25%~56% (3%~11%) for QCD (EW)-Vγjj
 - Madgraph v.s. Sherpa up to 20% for QCD-Vγjj
 - Parton showering model: 4-15% for EW-Vγjj
 - Interference between EW- and QCD-Vγjj up to -22%
- Post-fit impact of each systematics term \rightarrow
 - Largest exp. systematic impact from jet related

Source	1σ Uncertainty on $\mu_{Z\gamma_{\rm EW}}$
Jet scale and resolution	0.076
$V\gamma$ + jets theory	0.067
pile-up	0.040
Photon	0.035
$e \rightarrow \gamma$, jet $\rightarrow e, \gamma$ Bkg.	0.035
Lepton	0.027
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.023
Signal theory shape	0.020
Signal theory acceptance	0.12
Data stats.	0.16
$W\gamma$ + jets/ $Z\gamma$ + jets Norm.	0.073
MC stats.	0.063
Total	0.25

• Observation of EW $Z(\rightarrow \nu\nu)\gamma jj$: Signal Extraction & Meas.

- Maximum likelihood fit performed : signal strength and normalization of dominant background determined simultaneously
- 4 m_{jj} bins for each region and totally 4+16 bins
- 5.2 σ (5.1 σ expected) observed of EW-Z γ jj process
- $\sigma_{EW} = 1.31 \pm 0.20 (stat) \pm 0.20 (syst) fb$
- In agreement with prediction:

 $\sigma_{EW}^{pred} = 1.27 \pm 0.01 \, (stat)$

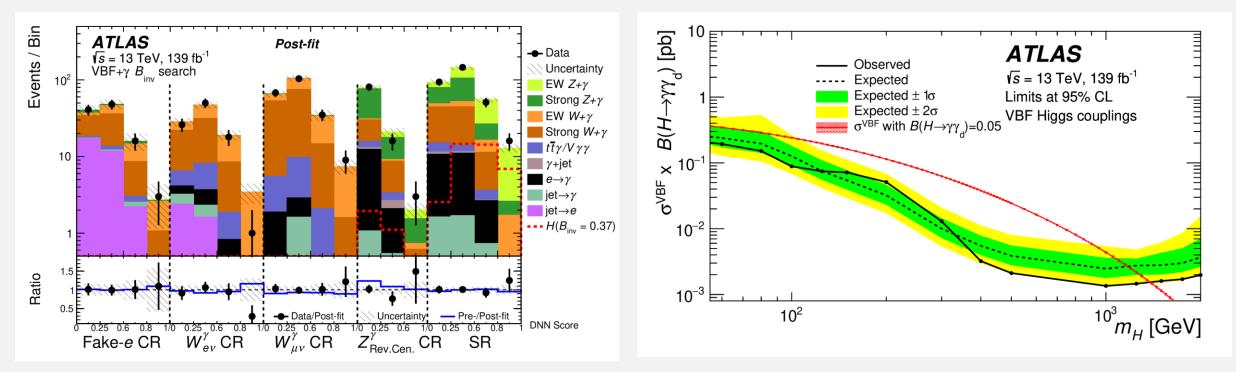

 ± 0.17 (LO QCD scale)

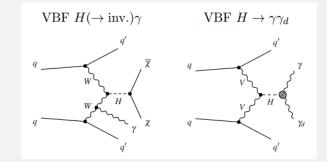
 $\pm 0.03 (PDF) fb$

(0.3% NLO QCD k-factor correction from VBFNLO applied)

	SR	$Z^{\gamma}_{\text{Rev.Cen.}}$ CR	$W^{\gamma}_{\ell\nu}$ CRs
$\mu_{Z\gamma EWK}$	~	\checkmark	
$\mu_{Z\gamma { m EWK}} \ \mu_{Z\gamma { m QCD}} \ \mu_{W\gamma}$	✓	\checkmark	
$\mu_{W\gamma}$	\checkmark	\checkmark	\checkmark

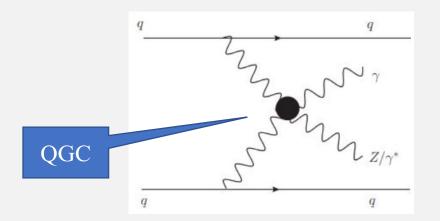
$\mu_{Z\gamma_{ m EW}}$	$eta_{Z\gamma_{ m strong}}$	$\beta_{W\gamma}$
1.03 ± 0.25	1.02 ± 0.41	1.01 ± 0.20




• Observation of EW $Z(\rightarrow \nu\nu)\gamma jj$: BSM interpretation

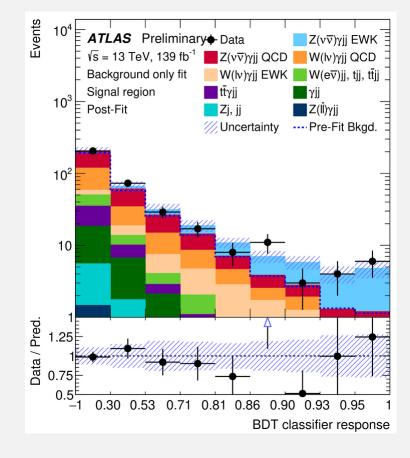
- Same VBF+MET+Photon signature also used to search for $H \rightarrow inv$. and $H \rightarrow \gamma \gamma_d$
- Dense Neural Network (DNN) used as fitting discriminant Highly suppress the QCD production Zyjj events
- No significant excess observed

95% CL upper limit of 0.37 ($0.34^{+0.15}_{-0.10}$ exp.) set on observed branching ratio



• $Z(\rightarrow \nu\nu)\gamma jj$ VBS analysis : Overview

- Dedicated measurement of SM EWK $Z(\rightarrow vv)\gamma jj$ process with full Run2 data
- High $p_T^{\gamma} > 150$ GeV and combined with orthogonal low $p_T^{\gamma} (15 110 GeV)$ observation from VBF+MET+Photon analysis
- Dominant background from QCD Z($\rightarrow \nu\nu$) γ [36%] and W(l ν) γ /tt γ [32%/6%] controlled by:
 - QCD-Z γ jj enriched regions : low mjj and reversed centrality requirement
 - W γ region : \geq 1 lepton
 - > Normalization simultaneously extracted together with signal strength in fit
- Fake photon and MET background estimated with data-driven and ~13% in total
- Boosted decision tree developed to increase S/B and used as fitting discriminant in SR, fit together with m_{jj} in CRs
- Sensitive final states to SM/anomalous QGC and limit set using EFT formalism

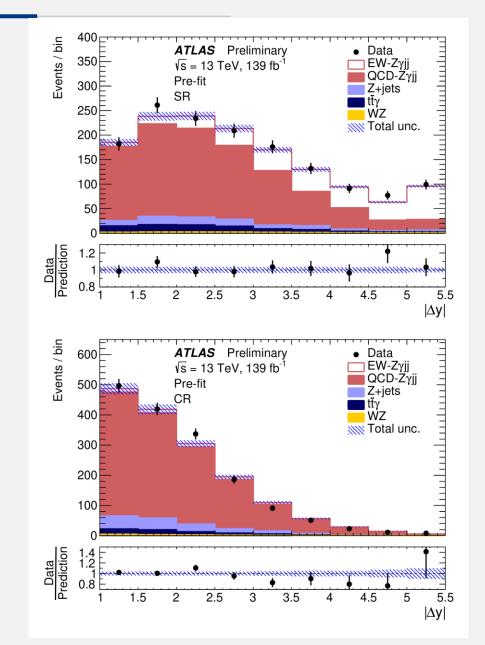


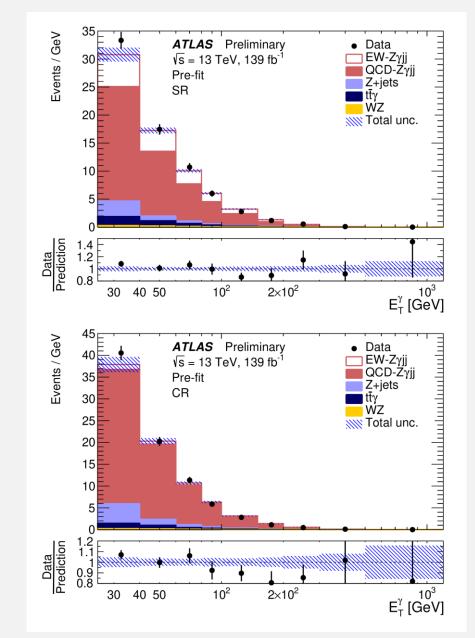
imension 8	3 operato	ors		SM		Bey	ond SI	N	
	wwww	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0/1}$	1	~	~						
$O_{M,0/1/6/7}$	~	~	1	1	~	~	~		
$O_{M,2/3/4/5}$		~	1	1	~	~	~		
$O_{T,0/1/2}$	~	~	1	~	~	~	~	~	~
$O_{T,5/6/7}$		~	1	~	√	~	~	1	~
$O_{T,8/9}$			1			~	~	1	1

• $Z(\rightarrow \nu\nu)\gamma jj$ VBS analysis : Results

- Evidence of EW $Z(\rightarrow \nu\nu)\gamma jj$ with high $p_T^{\gamma} > 150 \text{GeV}$
- Combination with observation of EW $Z(\rightarrow \nu\nu)\gamma jj$ at low p_T^{γ} from VBF+MET+ γ analysis : better significance
- No significant deviation from SM prediction and limit set on EFT dim-8 operator,
 - competitive with or better than previous analyses, in particular f_{T5}/Λ^4 , f_{T8}/Λ^4 and f_{T9}/Λ^4 (best up to now)

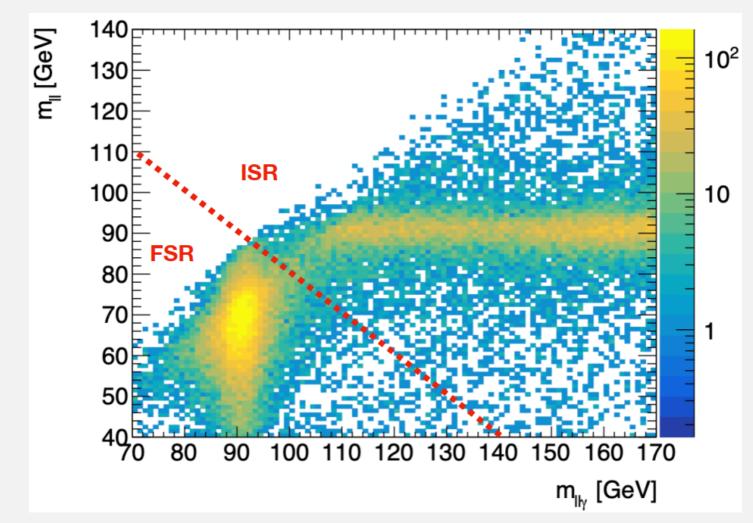
Coefficient	Observed limit, TeV^{-4}	Expected limit, TeV^{-4}
f_{T0}/Λ^4	$[-9.4, 8.4] \times 10^{-2}$	$[-1.3, 1.2] \times 10^{-1}$
• f_{T5}/Λ^4	$[-8.8, 9.9] \times 10^{-2}$	$[-1.2, 1.3] \times 10^{-1}$
• f_{T8}/Λ^4	$[-5.9, 5.9] imes 10^{-2}$	$[-8.1, 8.0] imes 10^{-2}$
• f_{T9}/Λ^4	$[-1.3, 1.3] imes 10^{-1}$	$[-1.7, 1.7] \times 10^{-1}$
f_{M0}/Λ^4	[-4.6, 4.6]	[-6.2, 6.2]
f_{M1}/Λ^4	[-7.7, 7.7]	$[-1.0, 1.0] imes 10^1$
f_{M2}/Λ^4	[-1.9, 1.9]	[-2.6, 2.6]



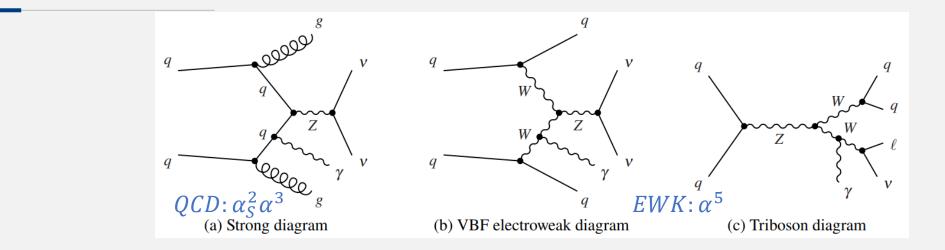


- VBS process has rich physics interest and widely studied in ATLAS
 - Important test of SM like EWSB and Higgs mechanism
 - Sensitive to new physics including invisible Higgs decay and dark matter
 - Crucial input for EFT study like aQGC
- Zy VBS process observed and measured with ATLAS full Run2 data
 - \succ EWK production of Z($\rightarrow ll$)γjj observed with 10σ
 - **>** EWK production of $Z(\rightarrow \nu\nu)\gamma$ jj observed with 5.2σ
 - Measurement of SM $Z(\rightarrow \nu\nu)\gamma$ jj VBS analysis with high photon p_T :
 - Combination with low photon p_T observation from VBF+MET+Photon analysis
 - Sensitive limit set on EFT dimension-8 operator and best result of f_{T5}/Λ^4 , f_{T8}/Λ^4 and f_{T9}/Λ^4

• Backups: $Z(\rightarrow ll)\gamma jj$ VBS



< 27 >

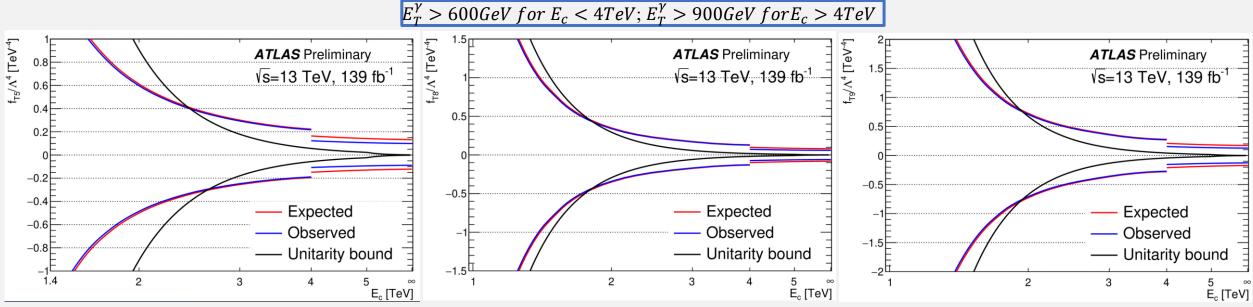

• Backups: $Z(\rightarrow ll)\gamma jj$ VBS

• Backups: EW $Z(\rightarrow \nu\nu)\gamma jj$

Process	Fake- <i>e</i> CR	W_{ev}^{γ} CR	W^{γ} CD	7^{γ} CP	SR - m_{jj} [TeV]			
FIOCESS	rake-e CK	W _{ev} CK	$W^{\gamma}_{\mu u}$ CR	$Z_{\text{Rev.Cen.}}^{\gamma}$ CR	0.25-0.5	0.5-1.0	1.0-1.5	≥ 1.5
Strong $Z\gamma$ + jets	8 ± 8	0 ± 1	3 ± 2	50 ± 12	20 ± 6	54 ± 12	13 ± 5	5 ± 2
EW $Z\gamma$ + jets	0.6 ± 0.2	0.3 ± 0.2	0.4 ± 0.2	7 ± 2	4 ± 1	30 ± 7	25 ± 5	36 ± 7
Strong $W\gamma$ + jets	43 ± 9	47 ± 9	133 ± 21	24 ± 6	22 ± 6	35 ± 10	9 ± 3	3 ± 1
EW $W\gamma$ + jets	19 ± 6	31 ± 7	59 ± 13	1.4 ± 0.5	2 ± 1	6 ± 1	4 ± 1	5 ± 1
jet $\rightarrow \gamma$	1 ± 1	2 ± 2	3 ± 2	2 ± 2	1 ± 1	2 ± 2	1 ± 1	0.4 ± 0.3
$jet \rightarrow e$	34 ± 17	5 ± 3	_	_	_	_	_	_
$e \rightarrow \gamma$	_	2.7 ± 0.4	2.9 ± 0.4	13 ± 1	6 ± 1	11 ± 1	2.6 ± 0.4	1.4 ± 0.3
γ + jet	_	—	—	0.7 ± 0.5	0.7 ± 0.5	0.4 ± 0.3	0.1 ± 0.1	0.1 ± 0.1
$t\bar{t}\gamma/V\gamma\gamma$	3 ± 1	9 ± 2	13 ± 2	3 ± 1	2 ± 1	4 ± 1	0.4 ± 0.2	0.1 ± 0.1
Fitted Yields	108 ± 10	96 ± 8	213 ± 14	102 ± 9	58 ± 6	143 ± 12	54 ± 5	52 ± 6
Data	108	95	216	100	52	153	50	52
Data/Fit	1.00 ± 0.14	0.99 ± 0.12	1.01 ± 0.09	0.98 ± 0.13	0.90 ± 0.15	1.07 ± 0.11	0.93 ± 0.16	0.99 ± 0.18

• Backups: EW $Z(\rightarrow \nu\nu)\gamma jj$

Process	Generator	ME Order	PDF	Parton Shower	Tune			
		SM process samples						
Strong $V\gamma$ + jets	Sherpa 2.2.8	NLO (up to 1-jet), LO (up to 3-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa			
EW $V\gamma$ + jets	MadGraph5_aMC@NLO2.6.5	LO	NNPDF3.1L0	Рутніа 8.240	A14			
EW VV+jets	Sherpa 2.2.1 of Sherpa v2.2.2	LO	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa			
VV+ jets	Sherpa 2.2.1 or Sherpa 2.2.2	NLO (up to 1-jet), LO (up to 3-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa			
EW V+jets	Herwig 7.1.3 or Herwig 7.2.0	NLO	MMHT2014nlo68cl	Herwig 7.1.3	Herwig 7			
Strong $W(\rightarrow \mu \nu) + \text{jets}/$ $W(\rightarrow \tau \nu) + \text{jets}$	Sherpa 2.2.7	NLO (up to 2-jets), LO (up to 4-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa			
$t\bar{t}\gamma$	MadGraph5_aMC@NLO2.2.3	NLO	NNPDF2.3LO	Рутніа 8.186	A14			
tī/Wt	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	A14			
νγγ	SHERPA 2.2.2 (at 0-jet), LO (up to 2-jets)	NLO	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa			
γ + jet	Sherpa 2.2.2	NLO (up to 2-jets), LO (up to 4-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa			
	Higgs-related samples							
ggF Higgs	POWHEG V2 NNLOPS	NNLO	PDF4LHC15	Рутніа 8.230	AZNLO			
Higgs + γ	MadGraph5_aMC@NLO 2.6.2	NLO	PDF4LHC15	Herwig 7.1.3p1	A14			
ggF Higgs $\rightarrow \gamma \gamma_{\rm d}$	POWHEG V2 NNLOPS	NNLO	PDF4LHC15	Рутніа 8.244р3	AZNLO			
VBF Higgs $\rightarrow \gamma \gamma_d$	Powheg v2	NLO	CTEQ6L1	Рутнія 8.244р3	AZNLO			
	Systematic variation samples							
$V\gamma$ + jets α^4 interference	MadGraph5_aMC@NLO 2.6.2	LO	NNPDF3.1L0	Рутніа 8.240	AZNLO			


• EFT results for $Z(\rightarrow \nu\nu)\gamma jj$ VBS

Clipping at E_c Unitarity is preserved

Unitarity is not preserved

Coefficient	Observed limit, TeV^{-4}	Expected limit, TeV^{-4}	Coefficient	E_c , TeV	Observed limit, TeV^{-4}	Expected limit, TeV^{-4}
f_{T0}/Λ^4	$[-9.4, 8.4] \times 10^{-2}$	$[-1.3, 1.2] \times 10^{-1}$	f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$
• f_{T5}/Λ^4	$[-8.8, 9.9] \times 10^{-2}$	$[-1.2, 1.3] \times 10^{-1}$	• f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$
• f_{T8}/Λ^4	$[-5.9, 5.9] \times 10^{-2}$	$[-8.1, 8.0] \times 10^{-2}$	$\bullet f_{T8}/\Lambda^4$	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$
• f_{T9}/Λ^4	$[-1.3, 1.3] imes 10^{-1}$	$[-1.7, 1.7] imes 10^{-1}$	$\bullet f_{T9}/\Lambda^4$	1.9	$[-7.9, 7.9] imes 10^{-1}$	$[-8.1, 8.1] imes 10^{-1}$
f_{M0}/Λ^4	[-4.6, 4.6]	[-6.2, 6.2]	f_{M0}/Λ^4	0.7	$[-1.6, 1.6] imes 10^2$	$[-1.5, 1.5] imes 10^2$
f_{M1}/Λ^4	[-7.7, 7.7]	$[-1.0, 1.0] imes 10^1$	f_{M1}/Λ^4	1.0	$[-1.6, 1.5] imes 10^2$	$[-1.4, 1.4] \times 10^2$
f_{M2}/Λ^4	[-1.9, 1.9]	[-2.6, 2.6]	f_{M2}/Λ^4	1.0	$[-3.3, 3.2] imes 10^1$	$[-3.0, 3.0] imes 10^1$

