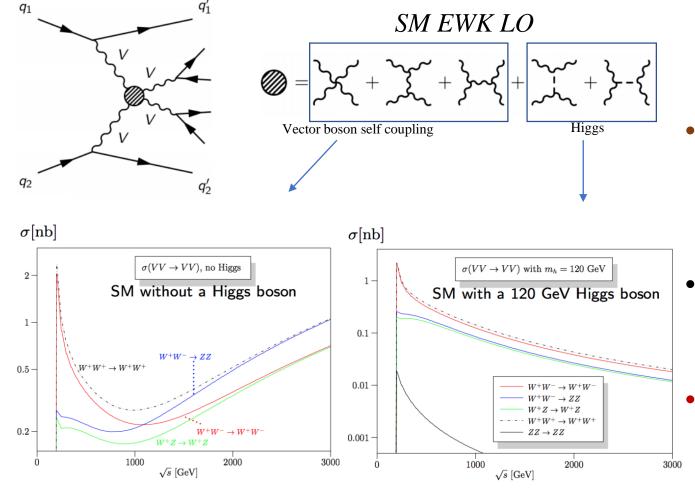


Observation of electroweak production of two jets and a Z-

boson pair on the LHC ATLAS

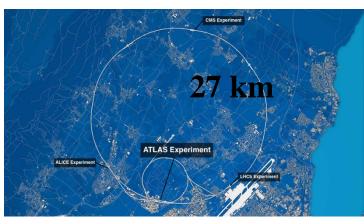

Aug. 22^{ed}, 2022

Mingyi Liu¹ mingyi.liu@cern.ch

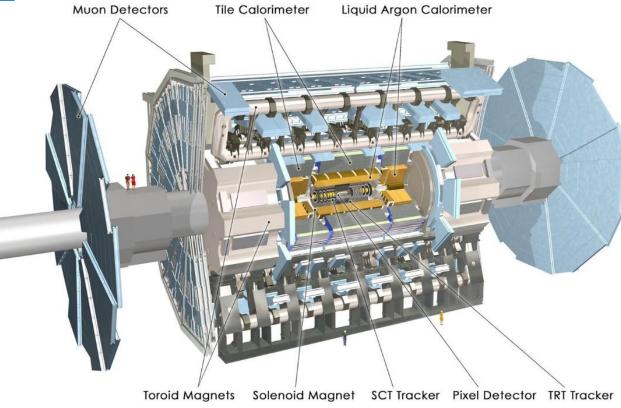
1. Univ. of Sci. & Tech. of China

Vector Boson Scattering

Resonances and unitarity in weak boson scattering at the LHC - IOPscience


- Higgs boson acts as "moderator" to unitarize high-energy longitudinal vector boson scattering
- Unitarity: If only Z/W are exchanged, the amplitude of vector boson scattering violates unitarity
- Higgs boson restore unitarity of total amplitude
- Vector boson scattering is key process to experimentally probe the SM nature of electroweak symmetry breaking.

Overview of VBS measurements on ATLAS


✓ Status of Aug. 2022

Channel	Obs. (Exp.) significance	Experimental Challenges
ssWW	<u>6.5(4.9)</u> σ 36.1 fb ⁻¹	"Golden channel": first observation of VBS in this channel, very good EW/QCD ratio
WZ	<u>5.3(3.2)</u> σ 36.1 fb ⁻¹	Similar cross section as ssWW, but larger QCD backgrounds
ZZ	<u>5.7(4.8) σ</u> First 139 fb ⁻¹ analysis	Very clean 41 channel, low background but small cross section
Ζγ	<u>~10 σ</u> 139 fb ⁻¹	Higher statistics due to photon

The ATLAS detector

CERN, Geneva, Switzerland ATLAS, CMS, LHCb, ALICE 100 meters underground ATLAS size: 46m×25m

Inner detector:

- $|\eta| < 2.5$
- Momentum, electrical charge
- Pixel detector, tracker (semiconductor), TRT

Calorimeters:

• EM Cal.($|\eta| < 2.5$):

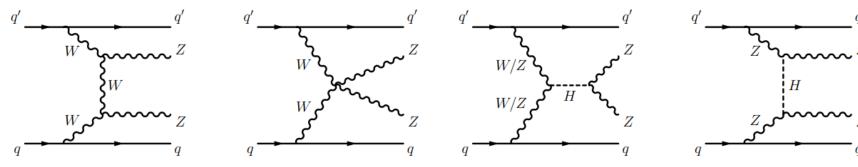
e& γ , lead absorber submerged by LAr

• Hadron Cal.($|\eta| < 4.9$):

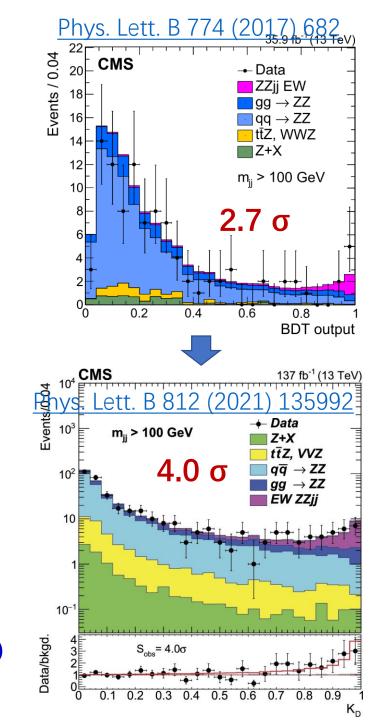
LAr with copper/tungsten absorber (forward) Scintillator tile with steel absorber (central)

Mingyi.Liu

Muon spectrometer:


- Tigger($|\eta| < 2.4$): TGC, RPC
- Tracking($|\eta| < 2.7$): MDT, CSC

Magnet system:


- Solenoid Magnet: 2T
- Toroid Magnets: 4T 4

Introduction

- The EW ZZjj production was searched for by the CMS collaboration using 35.9 fb⁻¹ of 13 TeV pp collision data (2015~2016), but no evidence was found.
- With more data collected between 2017~2018, luminosity increased to 139 fb⁻¹, more precise searches are presented by the LHC.
- Search for EW ZZjj production with 41 and 11vv final states
 - 41: very clean experimental signature, high signal-to-background ratio
 - llvv: larger branching ratio, but more complex background

• This ATLAS analysis presents the first VBS ZZjj observation (5.7 σ) with $439/4b^{-1}$ full run-2 datasets Mingyi.Liu

Analysis strategy

MC simulation

- Working on ATLAS full run-2 data with 139 fb⁻¹
- Experimental signature: 2j (Back-to-back, forwarded) + 41/21 with E_T^{miss} from neutrinos
- Step 1: Inclusive cross-section measurements in the fiducial volume
- Step 2: MVA (BDTG)-based analysis is then used to extract the EW VBS ZZ signal from background for:
 Observation of electroweak production of ZZjj
 Observed signal strength of the EW processes

The analysis is performed
independently in $ZZ \rightarrow 41$
and $ZZ \rightarrow 11vv$ final states.
Then combined together

Interference between EW and
QCD processes is treated as
systematic on the EW VBS ZZ
production measurement

EWK ZZjj (NLO)	Powheg-Box v2
QCD ZZjj	Sherpa222
QCD ggZZjj	4I:Sherpa222; Ilvv:gg2VV
WZ	Sherpa222
ttbar, single top	Powheg
ttV	MG5_aMC@NLO
Z+jets	Sherpa221
VVV	Sherpa222
<i>WW, WZ Semi-leptonic</i>	Powheg

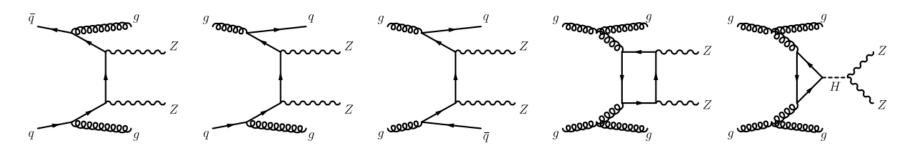
Event selection

41 ✓ Pairing: M_z as reference for Mll

llvv

✓ 3rd lepton veto to reduce ZZ→41, WZ→31+v;
✓ MET requirement to veto

Z+jets


	$\ell\ell\ell\ell\ell jj$	$\ell\ell u ujj$
Electrons	$\begin{array}{l} p_{\rm T} > 7 \ {\rm GeV}, \eta < 2.47 \\ d_0/\sigma_{d_0} < 5 \ {\rm and} \ z_0 \times \sin \theta < 0.5 \ {\rm mm} \end{array}$	
Muons	$\begin{array}{l} p_{\rm T} > 7 \ {\rm GeV}, \eta < 2.7 \\ d_0/\sigma_{d_0} < 3 \ {\rm and} \ z_0 \times \sin \theta < 0.5 \ {\rm mm} \end{array} p_{\rm T} > 7 \ {\rm GeV}, \eta < 2.5 \end{array}$	
Jets	$p_{\rm T} > 30~(40)~{ m GeV}$ for $ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60 \ (40)$ GeV for the leading (sub-leading) jet
ZZ selection	$p_{\rm T} > 20, 20, 10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^+\ell^-} - m_Z $	$p_{\rm T} > 30~(20)~{\rm GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons
	$m_{\ell^+\ell^-} > 10 \text{ GeV for lepton pairs}$ $\Delta R(\ell,\ell') > 0.2$	$egin{array}{l} 80 < m_{\ell^+\ell^-} < 100 \ { m GeV} \ { m No} \ { m b-tagged jets} \ E_{ m T}^{ m miss} \ { m significance} > 12 \end{array}$
Dijet coloction	$\begin{array}{c c} 66 < m_{\ell^+\ell^-} < 116 \ \text{GeV} & E_{\mathrm{T}}^{\mathrm{miss}} \ \text{significance} > 12 \\ \\ \hline \\ \text{Two most energetic jets with } y_{j_1} \times y_{j_2} < 0 \end{array}$	
Dijet selection	$m_{jj} > 300 \text{ GeV} \text{ and } \Delta y(jj) > 2$	$m_{jj} > 400 \text{ GeV} \text{ and } \Delta y(jj) > 2$

Generally tighter selections for llvv channel to get rid of the complex BKG

- Benchmark feature for the EW VBS process: A pair of back-to-back jet
- Optimizations of jet selection implemented to enhance EW VBS
- 41 channel: QCD CR for BKG strength constrain: Mjj<300 GeV or dYjj<2

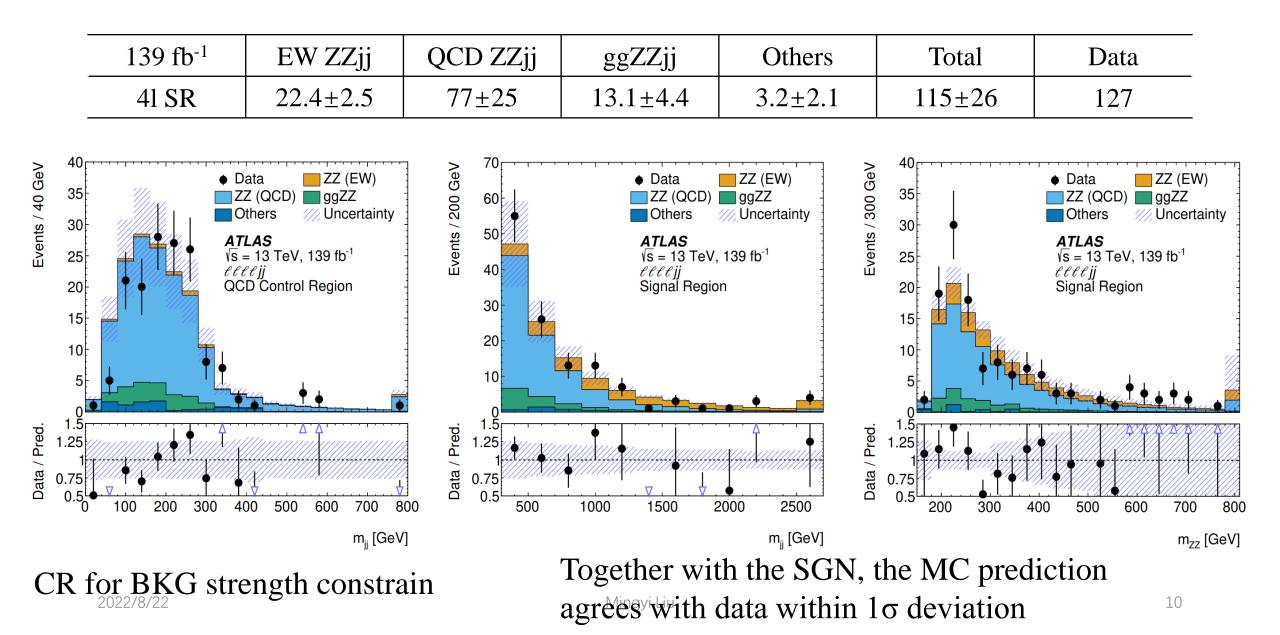
Background: 41 channel

Irreducible BKGs: qqZZ and ggZZ (Including ggF)

- QCD vertex induced processes
- BKG yield constrained by QCD CR (Normalization factor) •
- Reducible BKGs (Fake)
 - Fake leptons from Z + jets / tt, poor modeling: Data-driven fake factor method
 - Fake enriched regions (Z+jets CR and ttbar CR) defined to obtain the fake factors (F.F.) •
 - F.F.s from Z+jets CR and ttbar CRs are combined based on the individual ratios (Z+jets • over ttbar) 2022/8/22

Fake factor method (Data-driven)

- Fake factor measured in fake-enriched regions: Z+jets CR and ttbar CR
 - Poor electrons: fail the isolation or fail the loose electron identification (But still pass the VeryLooseLH)
 - Poor muons: fail the isolation or fail the d0 significance cut (but still pass |d0significance<10|)</p>
- 4l fake CR (F.F. application region) SR/CR with 1 or 2 poor leptons
- Fake contribution
 - \succ F = N(Good lepton)/N(Poor lepton)
 - $> N_{fake} = (N_{gggp} N^{ZZ}_{gggp}) \times F (N_{ggpp} N^{ZZ}_{ggpp}) \times F^2$
 - With prompt ZZ contribution subtracted
 - Events with more than 2 poor leptons are neglected 2due2to tiny contribution
 Mingyi.Liu

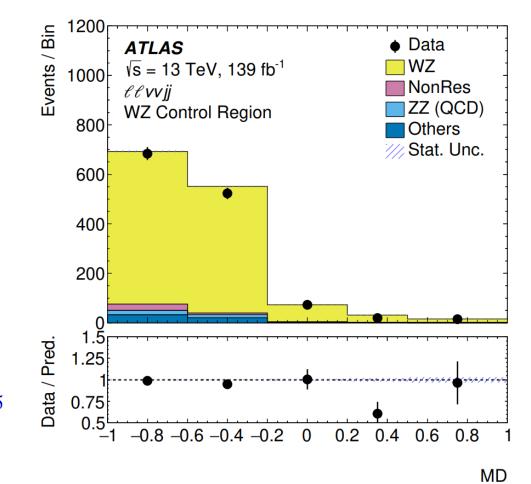

Fake factors:

- Separate by flavor
- 2D Functions of Pt / η
- F.F.s from Z+jets and ttbar CRs are combined based on the individual ratios (Z+jets over ttbar)

Subtraction for double counting

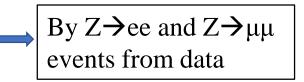
Fake lepton BKG yield is small, yielding less than 4 events (together with other minor processes like triboson and ttV).

Yields and distributions in 41 channel



Background: llvv channel

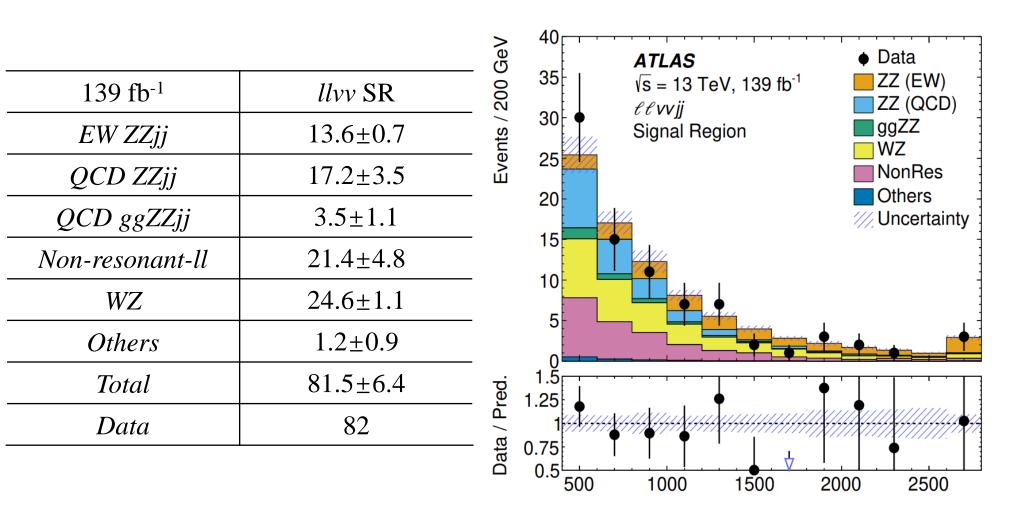
- Irreducible BKGs from ZZ:
 - Estimated from MC simulation
- WZjj BKG:
 - Data-driven, yield from dedicated 31-CR (Discriminated by lepton flavor), via transfer factor:


$$N_{WZ} = N_{Data-non WZMC}^{3l CR} \times \frac{N_{MC}^{2l SR}}{N_{MC}^{3l CR}}$$

• The EW WZjj MC is scaled by $1.77^{+0.51}_{-0.45}$ (The μ_{EW} measured from <u>ATLAS VBS</u> <u>WZjj paper</u>)

Background: llvv channel

- Non-resonant-ll (top, WW, Wt, Ζττ) BKG:
 - Data-driven, estimated with events in dedicated eµ-CR (Non-resll enriched region)
 - e/μ reconstruction and selection efficiency difference reflected by the epsilon factor $\epsilon^2 = Nee/N\mu\mu$



• The number of "non-res-ll" BKG in the kinetic region $Q(p_T, \eta)$ is obtained from eµ-CR:

$$N_{SR\ ee}^{Q,e\mu} = \frac{1}{2} \times \varepsilon^Q \times N_{e\mu\ CR}^{\mu \in Q,sub,bkg} \qquad N_{SR\ \mu\mu}^{Q,e\mu} = \frac{1}{2} \times \varepsilon^Q \times N_{e\mu\ CR}^{e \in Q,sub,bkg}$$

- Z+jets background is largely reduced by the MET-significance requirement
- Shape from MC, yield is estimated from data-driven in low MET-significance region

Yields and distributions in llvv channel

Together with the SGN, the MC prediction agrees with data within 1σ deviation

m_{ii} [GeV]

Systematics

- Theoretical uncertainty
 - PDF: Following the PDF4LHC procedure
 - $\alpha_{\rm S}$: Varying the $\alpha_{\rm S}$ value by ± 0.001
 - QCD scale: Varying the renormalization and factorization scales (Envelope), conservatively treated as uncorrelated between the SR and the QCD CR in the 4l channel.
 - Parton shower: Comparing the nominal Pythia 8 parton showering with the alternative Herwig 7

Experimental uncertainty

- Luminosity uncertainty
- The energy measurements of leptons and jets
- The lepton reconstruction and selection efficiencies
- Trigger selection efficiency
- Pile-up correction
- etc.
- ➤ MC statistical uncertainty

2022/8/22

~10% and 30% for the EW and QCD ZZjj process

~10% and 5% in the 41 and llvv channel

Systematics: Interference

Interference between EW and QCD processes is treated as systematic on the EW VBS ZZ production measurement

Two approaches to estimate the interference:

- 1. Subtract the EWK and QCD process from the inclusive one
- 2. Generate the interference process directly via Madgraph (Baseline)

$$|M|^{2} = |M_{EWK} + M_{QCD}|^{2} = |M_{EWK}|^{2} + |M_{QCD}|^{2} + 2 \times Re(M_{EWK}^{*} \cdot M_{QCD})$$

Varying from 10% to 2% in different MD regions

The ratio for Interference over EWK signal is treated as the systematic.

Systematics: 41 background

Modeling of the QCD ZZjj

- QCD ZZjj modelling is very important for the VBS analysis.
- Thus we compared different generators → Additional shape syst.: Compare Sherpa with Madgraph
- Also tried different correlation approaches, and eventually chose the most convective one: Uncorrelated between the low and high MD regions.

Pile-up modeling (Only considered for the QCD ZZjj BKG)

• Compare shape difference using low/high mu QCD MC events to cover the possible bias due to pile-up effect

Fake uncertainty

- Fake factor calculation
- 41 fake region where the fake factors are applied.

Ranges from 30% to 20% in different MD regions

In different MD regions are below 10% Except in the last bin in the QCD ZZjj CR where it reaches 50% due to the statistical uncertainty of the simulated events.

Systematics: llvv background

- WZjj background:
 - Systematics from: data statistic in 31 CR (dominant one, 5%);
 - Uncertainty from the quoted VBS WZjj paper on the 1.77 factor
- Non-resonant-ll (WW, top, Ζττ) Background:
 - Systematics include the data statistical uncertainty (dominant one, 20%);
 - The shape difference between MC and data-driven in SR
- Z+jets background:
 - Systematics include the MC and data-driven difference (dominant),
 - Different fitting functions, and different fitting range

Inclusive Cross-section measurement

- Cross sections are measured for the **inclusive processes**, in individual 41 and 11vv channels in **fiducial volume**.
- Fiducial regions are defined closely following the detector level selections, except
 - 41 channel: Z window loose to [60, 120] GeV (is [66, 116] GeV for detector-level).
 - llvv channel: truth MET > 130 GeV instead of MET-significance > 12

• Measures cross-section:
$$\sigma^{F.V.} = \frac{N_{data} - N_{bkg}}{C \times Lumi}$$

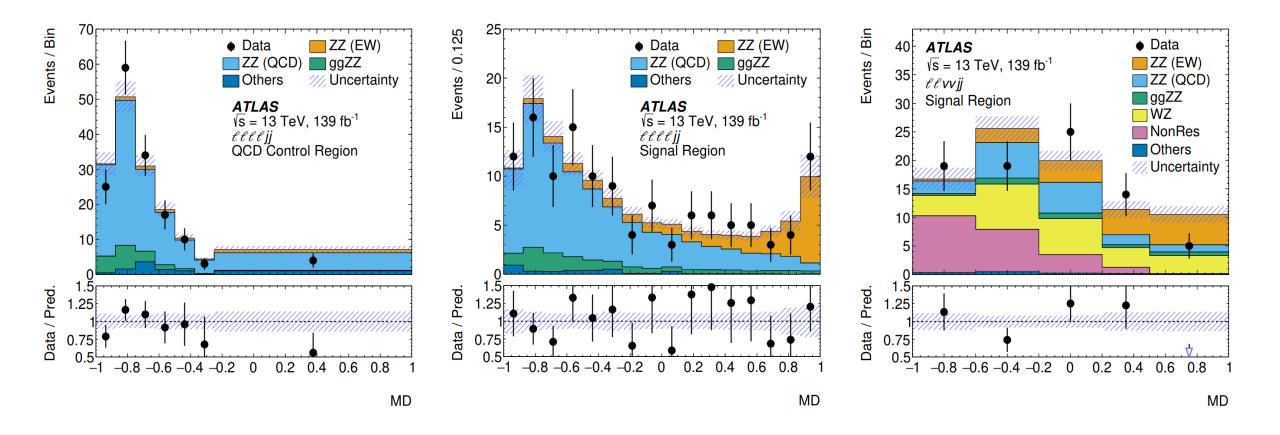
• C-factor: $C = \frac{N_{Reco}}{N_{F.V.-truth}}$

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
<i>lllljj</i>	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.02(\text{lumi})$	$1.16 \pm 0.04(\text{stat}) \pm 0.20(\text{theo})$
<i>llvvjj</i>	$1.13 \pm 0.28(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.15(\text{bkg}) \pm 0.02(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$
2022	2/8/22 Mingvi.Liu	

Statistical Fit for EW Processes

- Use Gradient Boost Decision Tree (BDTG)
 - Jet-related ones are important for 41
 - Both jet and dilepton related ones are important for llvv
- Fit 3 regions simultaneously: 41 SR, 41 QCD CR, llvv SR
- Parameter of interest (POI): μ_{EW}
- Normalization factor constrained in 41 QCD CR: μ_{OCD}
- The full set of systematics are included
 - Experimental systematics: Fully correlated in the 3 regions for each NP
 - Theoretical systematics: Different correlation approached have been tested and the most conservative one is chosen.

Observation!


	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
llljj	1.4 ± 0.4	0.98 ± 0.22	5.5 (4.4) <i>o</i>
<i>ℓℓνν</i> jj	0.8 ± 0.6	—	1.3 (2.0) σ
Combined	1.21 ± 0.31	0.99 ± 0.22	5.7 (4.8) σ

BDT variables		
41	llvv	
Mjj	Δ η(II)	
leading jet Pt	MII	
2 nd jet Pt	Δ Φ(II)	
p _T (ZZjj)/H _T (ZZjj)	Mjj	
Y(j1)×Y(j2)	MET-sig	
 ∆ Y(jj)	 ∆ Y(jj)	
Y* _{Z2}	Y(j1)×Y(j2)	
Y * _{Z1}	Η _τ	
p _T ^{ZZ}	Δ R(II)	
m _{zz}	2 nd jet Pt	
p _T ^{Z1}	MET	
p _T ^{I3}	p _T ^{l2}	
	leading p _T I	

PDT variables

Post-fit distributions

- BDT distributions are after statistical fit.
- The data distributions are well reproduced by the predicted contributions.

Conclusion

- The observation of VBS ($VV \rightarrow V'V'$) process in ZZ channel, with full Run 2 data of ATLAS is presented.
 - Observed (expected) significance of $5.7 (4.8)\sigma$.
 - Inclusive cross section in 4l and llvv channels has been measured individually.
 Compatible with SM prediction and still dominant by data statistical uncertainty.

• This result completes the observation of weak boson scattering for massive bosons.

Accepted by Nature Physics!