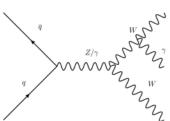
Measurement of WWy and VBS Wy production

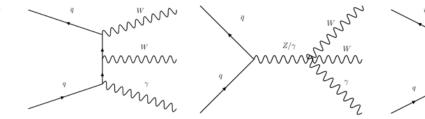
Jing Peng on behalf of the CMS Collaboration MBI2022

Measurement of WWy and VBS Wy production

OUTLINE

★WWy


- WWγ Brief Introduction
- Previous WWγ study at CMS/ATLAS
- Probing Higgs boson couplings in H+γ production at the LHC


★VBS Wγ

- Introduction and objects definition
- Data and Simulated samples
- Nonprompt photon and nonprompt lepton
- Selection definitions and uncertanties
- Comparison plot in control region
- Fiducial cross section and differential cross section
- Limits on dimension 8 EFT coefficients
- Summary

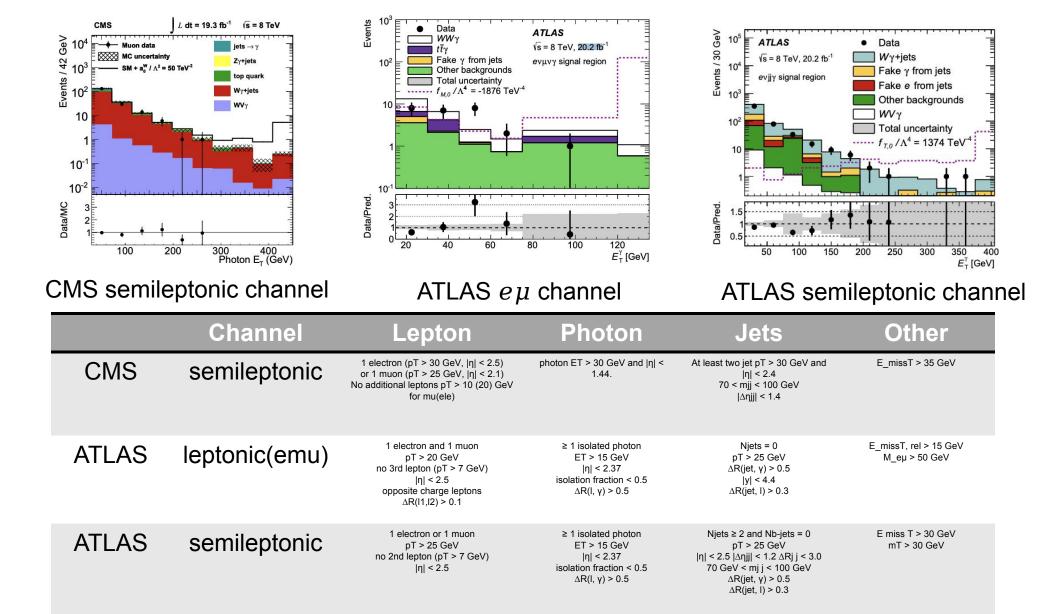
Measurement of WWy production

WWy BRIEF INTRODUCTION

WWy Representative Feynman Diagrams

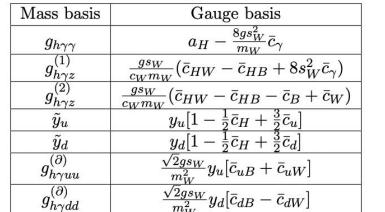
CMS in 2014 at √s = 8 TeV with 19.3/fb
Focus on WWγ semileptonic channel
Atlas in 2014 at √s = 8 TeV with 20.2/fb
Focus on WWγ *eµ* channel
Atlas in 2014 at √s = 8 TeV with 20.2/fb

Focus on WWγ semi-leptonic channel

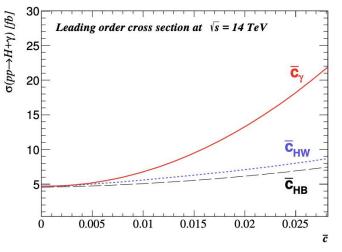

Direct measurement of gauge boson self-couplings and precision test of SM

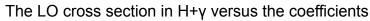
- CMS studied semi-leptonic WWy and anomalous quartic gauge couplings at \sqrt{s} = 8 TeV with 19.3/fb in 2014 [1]
- ATLAS studied $e\mu$ and semi-leptonic channel at \sqrt{s} = 8 TeV with 20.2/fb and significance is 1.4(1.6) σ [2]
- NOW: at CMS, $e\mu$ channel at \sqrt{s} = 13 TeV with 138/fb is under study. Beyond SM study
 - CMS studied WWy anomalous quartic gauge couplings at \sqrt{s} = 8 TeV in 2014
 - ATLAS studied WWy anomalous quartic gauge couplings at \sqrt{s} = 8 TeV with 20.2/fb in 2017
 - NOW: at CMS,

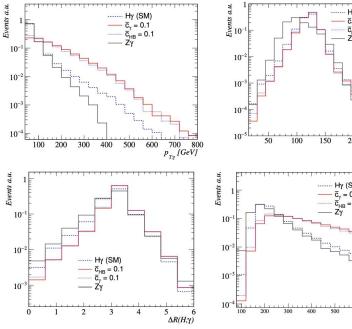
based on SM WWy study, rare Hy process and/or anomalous coupling between Higgs and quarks can be studied


[1] Eur. Phys. J. C, 2017, 77(9): 646 [2] Phys. Rev. D, 2014, 90(3): 032008

PREVIOUS WWY STUDY AT CMS/ATLAS




Probing Higgs boson couplings in H+y production at the LHC $_{\mbox{\tiny BI}}$


arXiv:1702.05753

Higgs mass coupling and gauge basis relation

The distributions with the corresponding coefficients

Coefficient	$\mathcal{L}=300~{ m fb}^{-1}$	$\mathcal{L}=3000~{ m fb}^{-1}$
$ar{c}_{\gamma}$	[-0.013, 0.023]	[-0.0042, 0.0075]
$ar{c}_{HB}$	[-0.038,0.050]	[-0.012,0.016]
$ar{c}_{HW}$	[-0.053,0.038]	[-0.017,0.012]

The predicted constraints at 95% CL

- Focus on the operators which are relevant to Higgs+γ process according to the strongly interacting light Higgs (SILH)
- There is a significant sensitivity to operator \overline{C}_{γ} , \overline{C}_{HW} , \overline{C}_{HB} .
- Consider γ+jets, tjγ + ttγ, Wγ + Zγ and SM (Hγ) as background.
- Cuts:

```
One photon and lepton veto
```

Only 2 b-jets,
$$\Delta R(i,j) > 0.4$$
 i, j = γ , b

90 < $m_{b\overline{b}}$ < 160 GeV and $\Delta R(H, \gamma)$ > 2.4

 $m_{b\overline{b}\nu}$ > 250 and $P_{T\nu}$ > 400 GeV (decreases fake photon)

With an integrated luminosity of 3000 fb-1:

 \overline{C}_{γ} , \overline{C}_{HW} , \overline{C}_{HB} can be down to 10⁻² and 10⁻³

Measurement of VBS Wy production

INTRODUCTION

- Goal : probe quartic gauge couplings and triple gauge couplings
- **Final states**: evyjj and µvyjj.

Signature : large dijet mass and large η separation between the jets, the vector boson scattering topology

- Previous analysis: SMP-19-008

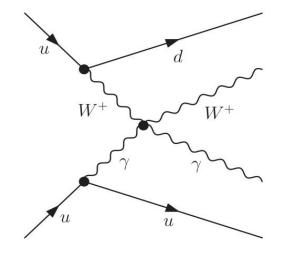
Main results:

- Signal strength and significance
- Fiducial and differential cross-section measurements
- Limits on dimension 8 EFT coefficients

OBJECT DEFINITION

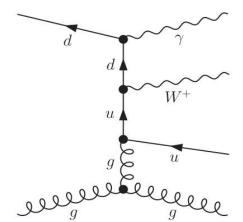
- Muon selection
 - Cut-based tight ID
 - Relative PF isolation with cone size = 0.4, $\delta\beta$ pileup correction < 0.15
 - pT > 20 GeV, |η| < 2.4
- Electron selection
 - Cut-based tight ID
 - pT > 20 GeV, $|\eta| < 2.5$, $|\eta| < 1.4442$ or $1.566 < |\eta| < 2.5$
- Photon selection
 - Cut-based medium ID
 - Conversion-safe electron veto
 - pT > 25 GeV and $|\eta| < 1.4442$ or $1.566 < |\eta| < 2.5$

- Jet selection
 - AK4CHS jet

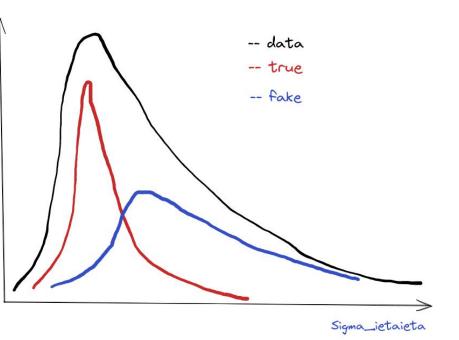

Muon veto

- Cut-based loose ID
- pT > 10 GeV and $|\eta| < 2.4$
- Relative PF isolation with
 - cone size = 0.4
 - δβ pileup correction < 0.25
- Electron veto
 - Cut-based veto ID
 - pT > 20 GeV
 - |η| < 2.5, |η| <1.4442 or 1.566 < |η|< 2.5

DATA AND SIMULATED SAMPLES


- Data

- "SingleMuon" and "SingleElectron" collected from 2016 to 2018 with integrated luminosity: 138 /fb.
- MC Signal
 - Electroweak production of Wyjj : signal for VBS Wy, Generated by MADGRAPH5_aMC@NLO (MG5), simulated at leading order.
 - process syntax
 - define lep = e+ e- mu+ mu- ta+ ta-
 - define nu = ve ve~ vm vm~ vt vt~
 - define p = p b b~
 - define $j = j b b \sim$
 - generate p p > lep nu a j j \$\$ t t~ QCD=0
 - <u>Signature</u>: large dijet mass and large η separation between the jets

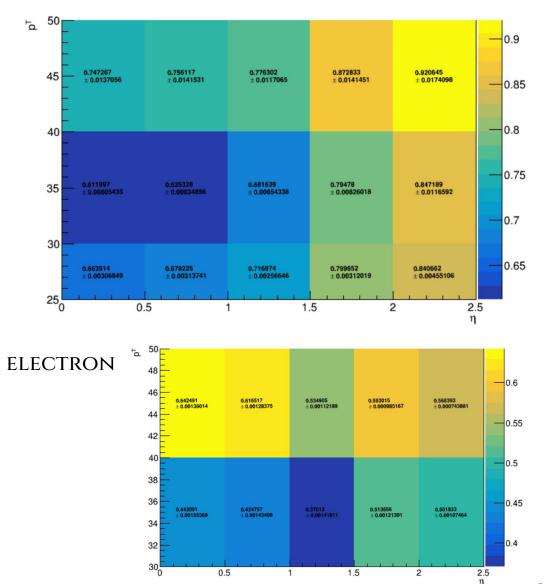

DATA AND SIMULATED SAMPLES

- MC Background
 - Wy plus QCD jets : Main backbround for VBS Wy, Generated by MG5 using FxFx jet merging scheme(0, 1 jets).
 - process syntax
 - define lep = e+ mu+ ta+ e- mu- ta-
 - define nu = ve vm vt ve~ vm~ vt~
 - generate p p > lep nu a [QCD] @0
 - add process p p > lep nu j a [QCD] @1
- Nonprompt background estimation
 - Including the nonprompt photon, nonprompt lepton, and double nonprompt
 - They are estimated by data-driven methods and will be introduced in next few slides.

NONPROMPT PHOTON

- Where is the Nonprompt photon from?
 - Mainly π^0 s mis-reconstructed as photons
- How to estimate it?
 - Template method
 - Make 'TRUE', 'FAKE', and 'DATA' templates
 - Weight_{fake photon} = $\frac{h_{data}}{h_{plj}} \times$ fraction

	1 5		
Template	True	Fake	DATE
Sample	QCD $W\gamma$	Data	Data
BASIC SELECTION		lepton and photon cut	
Individual selection	photon CHISO < 1.141	photon CHISO inverted (4 to 10)	photon CHISO < 1.141
Fit		fit on $\sigma_{i\eta i\eta}$	


NONPROMPT LEPTON

- Nonprompt Lepton

- Mainly real electrons and muons inside of jets
- tight-loose method
- Subtract real lepton contamination using W+jets and Z+jets MC samples

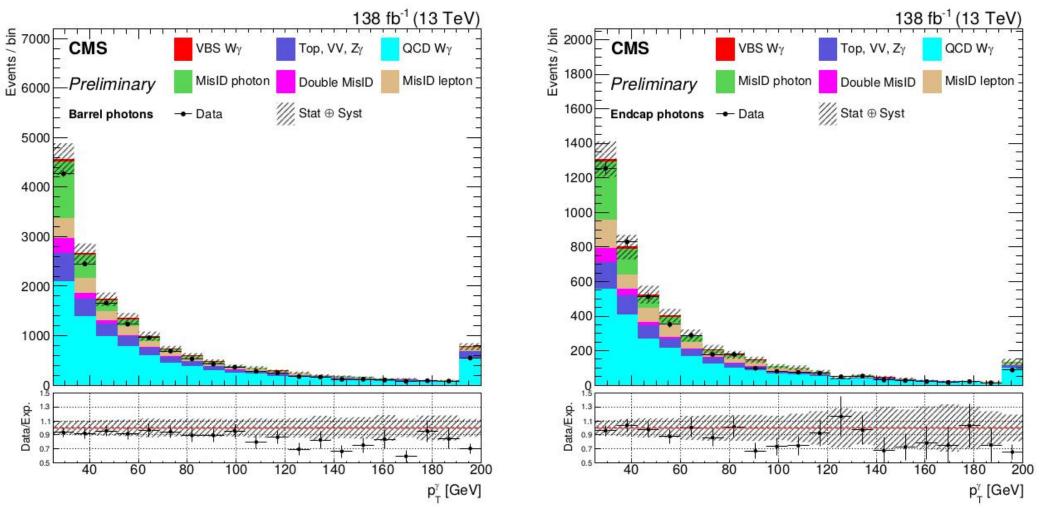
- fake_rate =
$$\frac{\text{tight}}{\text{tight} + \text{loose}}$$

- Weight_{fake_lepton} = $\frac{fake_rate}{1-fake_rate}$
- Double nonprompt
 - Contain both a nonprompt photon and a nonprompt lepton

MUON

SELECTION DEFINITIONS

- Basic selection
 - one muon(electron) in muon(electron) channel, second lepton veto
 - two reconstructed jets, p_T^{j1} > 50 GeV , $|\eta^{j1}| < 4.7$, p_T^{j2} > 50 GeV , $|\eta^{j2}| < 4.7$
 - $E_T^{miss} > 30 GeV, M_T(W) > 30 GeV, p_T^{\ell} > 35 GeV, |\eta^{\ell}| < 2.4/2.5(muon/electron)$
 - $p_T^{\gamma} > 25 GeV, |\eta^{\gamma}| < 1.4442(barrel), 1.556 < |\eta^{\gamma}| < 2.5(endcap), |M_{\ell\gamma} M_Z| > 10 GeV(electron)$
 - B-tagged jets veto, $\Delta R_{j\gamma} > 0.5$, $\Delta R_{\ell\gamma} > 0.5$, $\Delta R_{j\ell} > 0.5$, $|\Delta \varphi_{j,met}| > 0.5$
- Control region
 - 200GeV $< M_{jj} < 500 GeV$
- Signal region
 - $M_{jj} > 500 GeV$, $M_{W\gamma} > 100 GeV$, $|\Delta \eta_{jj}| > 2.5$
 - zepp<1.2, dphi>2.0

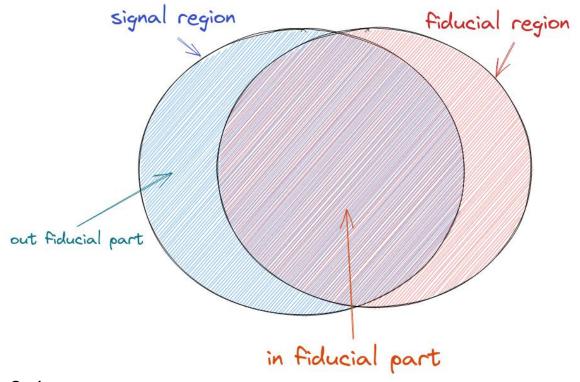

Extract signal from 2D fit of $M_{jj} - M_{\ell\gamma}$ Significance : 6.0(6.8) standard deviations

UNCERTAINTIES

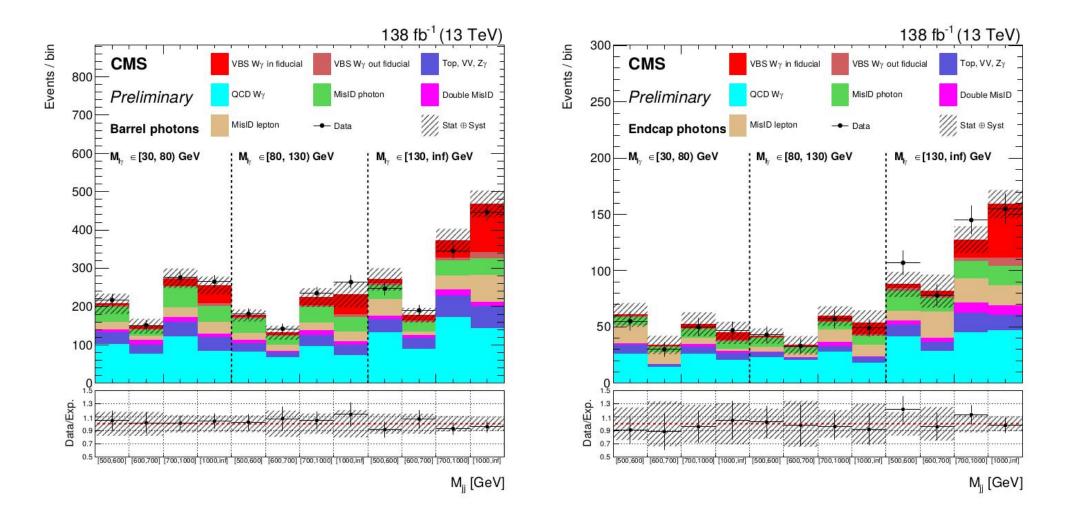
- Factorization and renormalization scale uncertainty
 - Calculated bin-by-bin, correlated across bins, channels, and years
- PDF uncertainty
 - Standard deviation of the NNPDF3.0 set variations
 - Calculated bin-by-bin, correlated across bins, channels, and years
- Fake photon uncertainty
 - 3 sources of uncertainty are added in quadrature
 - Uncertainty due to charged isolation sideband selection
 - Uncertainty due to non-closure of MC closure test
 - Uncertainty due to fit error
 - Calculated bin-by-bin, correlated across bins, channels, and years
- Fake lepton uncertainty
 - 30% normalization uncertainty for each lepton flavor
- Jet energy scale and resolution(JES and JER)
 - Choose the largest deviation of up/down to the central
 - Calculated bin-by-bin, correlated across bins, channels, and years
 - **★ JES** is the largest uncertainty and is broken into 12 sub-uncertainties.
- Other systematic uncertainties
 - Pileup, L1 prefiring for 2016-2017, luminosity, lepton and photon scale factors-

THEORETICAL

COMPARISON PLOT IN CONTROL REGION


★ Pre-fit plot for photon pT in control region. The left is for barrel and the right for edcap.
 ★ Data and MC have good agreement within uncertainties(stat + syst).

FIDUCIAL CROSS SECTION


- The fiducial region is defined at "particle level" ("generator level").
- The component of the signal that doesn't pass the fiducial region is treated as a background.

★ FIDUCIAL REGION SELECTIONS :

- Jet pT > 50 GeV and $|\eta| < 4.7$
- Photon pT> 25 GeV
- Photon $|\eta| < 1.4442$ or $1.566 < |\eta| < 2.5$
- Lepton pT > 35 GeV and $|\eta| < 2.4$
- mjj > 500 GeV, |ηjj|> 2.5
- $\Delta R j j$, $\Delta R j \gamma$, $\Delta R j l$, $\Delta R l \gamma > 0.5$
- Leptons are dressed with photons within $\Delta R = 0.1$

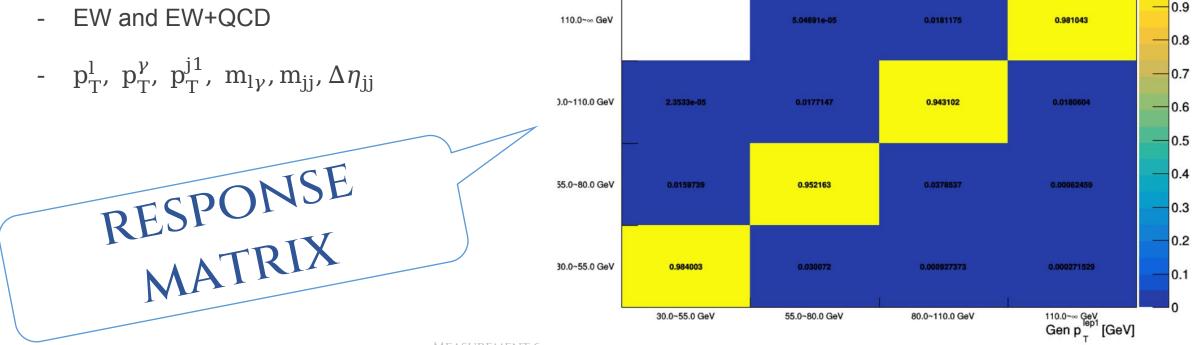
FIDUCIAL CROSS SECTION

FIDUCIAL CROSS SECTION

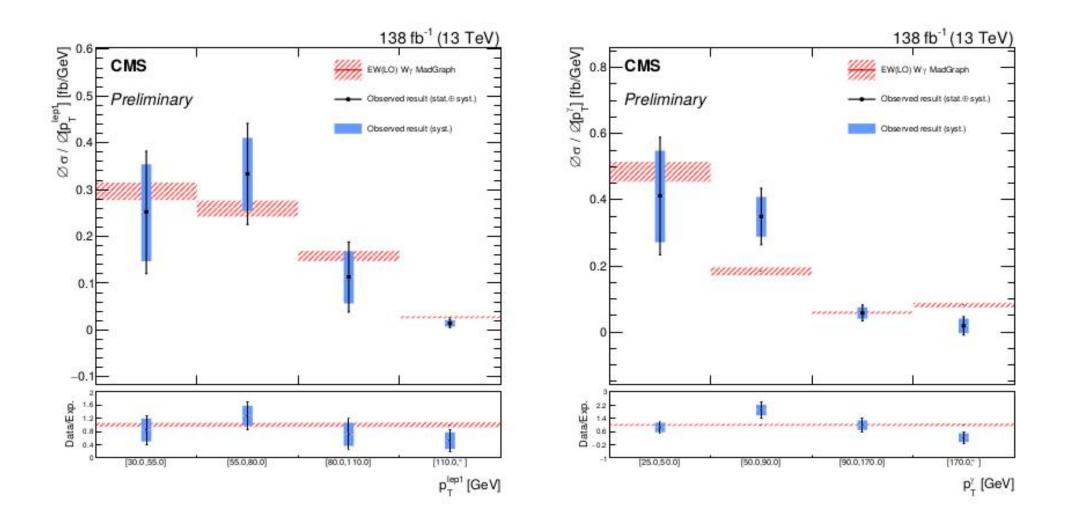
$\boldsymbol{\sigma}_{fiducial_XS} = \boldsymbol{\sigma} \boldsymbol{\cdot} \boldsymbol{\mu} \boldsymbol{\cdot} \boldsymbol{\epsilon}$

- σ is the cross section of the Monte Carlo signal sample.
- μ is the signal strength from fitting.
- $oldsymbol{\epsilon}$ is the fracation of the generated signal events passing the fiducial region selection

\star Fiducial cross section


- EW

- Acceptance = 0.034
- $\sigma_{\rm EW}^{\rm fid}$ = 19^{+4.0}_{-3.9} = 19^{+2.3}_{-2.3}(stat)^{+1.6}_{-1.4}(theo)^{+2.9}_{-2.8}(syst)fb
- EW +QCD
 - Acceptance = 4.6e-4

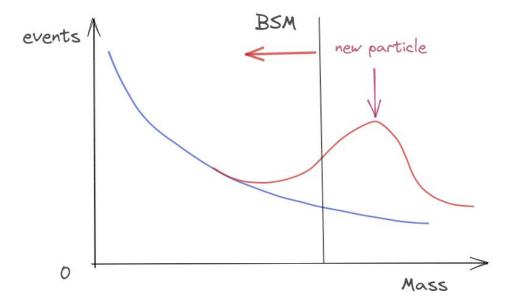

-
$$\sigma_{\text{EW+QCD}}^{\text{fid}} = 90^{+11}_{-10} = 90^{+1.6}_{-1.6} (\text{stat})^{+2.0}_{-1.8} (\text{theo})^{+10}_{-10} (\text{syst}) \text{fb}$$

DIFFERENTIAL CROSS SECTION

- The full run2 data collected on CMS has larger statistic.
- Perform 'unfolding' to revert the 'detector smearing' on the data to get the 'True' distribution.
- Same uncertainties with fiducial cross section measurement.
- Differential cross section are measured :

DIFFERENTIAL CROSS SECTION

LIMITS ON DIMENSION 8 EFT COEFFICIENTS

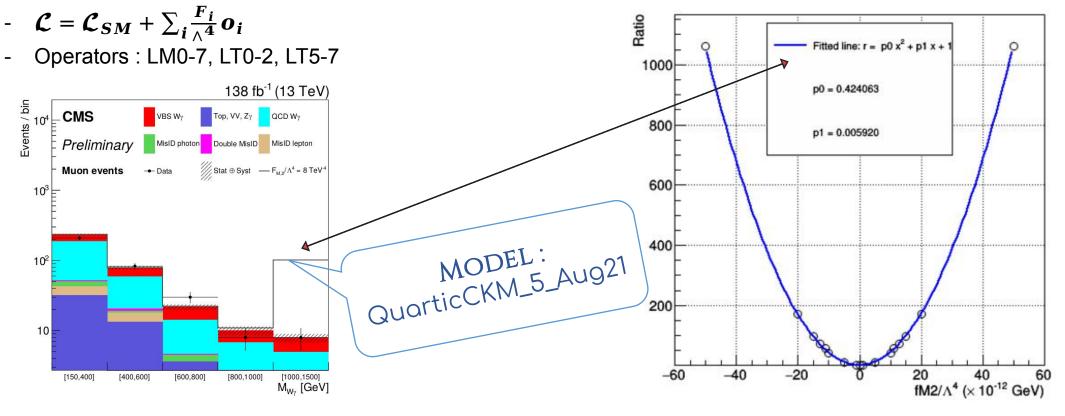

- Powerful portal test to BSM effects in a model independent approach, usually

parametrized as Effective Field Theory (EFT)

- Dimention 8 EFT model
- Effective field theory with cutoff energy scale Λ

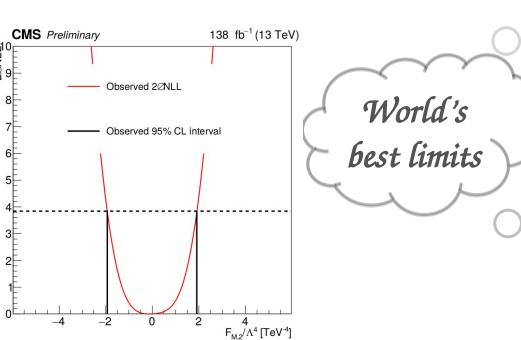
$$-\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{F_i}{\Lambda^4} o_i$$

- Operators : LM0-7, LT0-2, LT5-7



LIMITS ON DIMENSION 8 EFT COEFFICIENTS

- Powerful portal test to BSM effects in a model independent approach, usually parametrized as Effective Field Theory (EFT)
- Dimention 8 EFT model
- Effective field theory with cutoff energy scale Λ


The yield ratio between SM and AQGC following the quadratic function!

QUADRATIC FITTING

LIMITS ON DIMENSION 8 EFT COEFFICIENTS

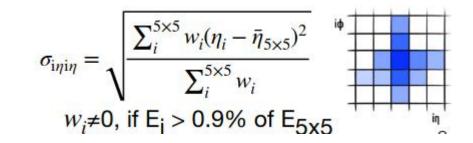
- **Dimention 8 EFT model**
- Effective field theory with cutoff energy scale Λ
- $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i \wedge 4} \frac{F_i}{\wedge 4} o_i$ Operators : LM0-7, LT0-2, LT5-7

	Coef	Exp Low(TeV^{-4})	Exp High(TeV^{-4})	Obs Low(TeV^{-4})	Obs High($T e V^{-4}$)
	F_{M0}/Λ^4	-5.1	5.1	-56	5.5
	F_{M1}/Λ^4	-7.1	7.4	-7.8	8.1
	F_{M2}/Λ^4	-1.8	1.8	-1.9	1.9
0	F_{M3}/Λ^4	-2.5	2.5	-2.7	2.7
	F_{M4}/Λ^4	-3.3	3.3	-3.7	3.6
	F_{M5}/Λ^4	-3.4	3.6	-3.9	3.9
	F_{M7}/Λ^4	-13	13	-14	14
	F_{T0}/Λ^4	-0.43	51	-0.47	0.51
	F_{T1}/Λ^4	-0.27	0.31	-0.31	0.34
	F_{T2}/Λ^4	-0.72	0.92	-0.85	1.0
	F_{T5}/Λ^4	-0.29	0.31	-0.31	0.33
0	F_{T6}/Λ^4	-0.23	0.25	-0.25	0.27
	F_{T7}/Λ^4	-0.60	0.68	-0.67	0.73

SUMMARY

- Significance
 - First observation of VBS Wy process based on only run2 data
 - 6.03σ observed, 6.79σ expected
- Fiducial cross section measurements:
 - $\sigma_{EW}^{fid} = 19^{+4.0}_{-3.9} = 19^{+2.3}_{-2.3} (stat)^{+1.6}_{-1.4} (theo)^{+2.9}_{-2.8} (syst) fb$
 - $\sigma_{EW+QCD}^{fid} = 90^{+11}_{-10} = 90^{+1.6}_{-1.6} (stat)^{+2.0}_{-1.8} (theo)^{+10}_{-10} (syst) fb$

Differential cross section measurements:


- EW and EW+QCD
- p_T^l , p_T^{γ} , p_T^{j1} , $m_{l\gamma}$, m_{jj} , $\Delta \eta_{jj}$
- Anomalous coupling limits
 - We set limits for dimention 8 EFT coeffients
 - We can get world's best limits for FM2-5, FT5-7)

BACK UP

PROMPT PILEUP PHOTON ESTIMATION

- Record the event and luminosity block numbers of the selected events in the W+jets sample
- Using a DAS query, find the corresponding MINIAODSIM W+jets files
- Access each of the MINIAODSIM files, and record the event and luminosity block numbers of the minimum bias events that are mixed into the 0th bunch crossing of the W+jet sevent
- Using a DAS query, find the GENSIM minimum bias file that contains each of the minimum bias events
- Match the generator photons in the minimum bias files to the selected reconstructed photons in the W+jets events
- If there is a matched generator photon, determine whether it is prompt based on its

Selected W+jets events	Matched gen particles in pileup events that are mixed into the W+jet events			
Evt Num	ID	p _T	$\Delta R(gen part, reco \gamma)$	Moth ID
1	22	12.5	0.002753	111
1	22	15.0	0.010083	111
2	22	28.2	0.0091	111
3	-211	5.5	0.146365	-213
3	22	24.9	0.065286	111
4	22	6.4	0.024246	111
4	22	18.6	0.019501	111
5	22	31.6	0.039385	22

WWy OBJECT DEFINATION

Good Electron:

- / mvaFall17V2Iso_WP80

Good Photon:

- ✓ Cut-based Medium ID
- ✓ Pass pixel veto
- $p_T > 20$ GeV, $|\eta| < 2.5$, $|\eta| < 1.4442$ or 1.566 $< |\eta| < 2.5$

Jets

- PF tight ID
- ✓ AK4CHS
- ✓ JEC correction

Good Muon:

- Cut-Based Medium ID mvaTTH>-0.2 [1] miniPFRellso_all < 0.4 [1]
- $p_{T} > 20 \text{ GeV}, |n| < 2.4$

PuppiMET

MET

/ JES/JER correction

Veto and Fake Electron:

- ✓ Cut-based Veto ID
- ✓ p_T > 10 (25) GeV, |η|< 2.5,</p>
- ✓ |η|< 1.4442 or 1.566 or |η|< 2.5

Fake Muon:

- ✓ Cut-Based Medium ID
- ✓ mvaTTH<-0.2
- ✓ miniPFRellso_all < 0.4</p>
- ✓ p_T > 20 GeV, |η|< 2.5</p>

Veto Muon:

- ✓ Cut-Based loose ID
- ✓ miniPFRellso_all < 0.4
- ✓ p_T > 10 GeV, |η| < 2.4</p>