Observation of $\mathrm{Y} Y \rightarrow \mathrm{TT}$ in ultraperipheral lead－lead collisions and constraints on $\tau \mathrm{g}-2$

Haifeng Li李海峰

Shandong University，Qingdao山东大学（青岛）

MBI，Shanghai，August 25， 2022

Motivation and how to measure $\tau \mathrm{g}-2$

Motivation for measuring $\tau \mathrm{g}-2$

Magnetic moment of a particle: $\quad \boldsymbol{\mu}=g \frac{q}{2 m} \mathbf{S}$

Anomalous magnetic moment: $\quad a_{l} \equiv \frac{g_{l}-2}{2}$
Electron g-2: -2.5 σ tension with the SM, Science 360, 191 (2018)
Muon g-2: $+4.2 \sigma$ tension with the SM
Phys. Rev. Lett. 126, 141801

Motivation for measuring $\tau \mathrm{g}-2$

Magnetic moment of a particle: $\quad \boldsymbol{\mu}=g \frac{q}{2 m} \mathbf{S}$

2
Dirac 1928

α / π
Schwinger 1948

Possible new physics

Tau is $280 \times$ more sensitive to SUSY than muon
Martin, Wells, Phys. Rev. D64 (2001) 035003

$$
\begin{aligned}
& \delta a_{\ell} \sim m_{\ell}^{2} / M_{\mathrm{SUSY}}^{2} \\
& m_{\tau}^{2} / m_{\mu}^{2} \sim 280
\end{aligned}
$$

How to measure $\tau \mathrm{g}-2$ at collider

Measure the process with $\mathrm{T}-\gamma-\mathrm{T}$ vertex to get a_{T} :

$$
a_{\tau} \equiv \frac{g_{\tau}-2}{2}
$$

Before LHC, the most precise measurement of a_{T} is from LEP

Experimental measurement: $a_{\tau}=-0.018 \pm 0.017$, DELPHI, Eur. Phys. J. C35: 159-170, 2004

SM prediction: $\quad a_{\tau, \mathrm{SM}}^{\mathrm{pred}}=0.00117721(5)$
Eidelman, Passera, Mod. Phys. A22:159-179, 2007

Ultraperipheral Collisions

- EM interactions become dominant at large impact parameters, $b>2 R_{A}$, where R_{A} is the ion radius. Such collisions are usually referred to as ultraperipheral collisions (UPC)
- UPC of lead-lead could be used as a lowenergy photon-photon collider
- Measure the process of $\mathrm{YY} \rightarrow \mathrm{TT}$ in ultraperipheral lead-lead collisions
- Cross section enhanced by $Z^{4} \sim 4.5 \times 10^{7}$ with $Z_{\text {Pb }}=82$

Extracting a_{τ}

The amplitude of $\gamma \gamma \rightarrow \ell^{+} \ell^{-}$:

$$
\begin{aligned}
& \mathcal{M}=(-i) \epsilon_{1 \mu} \epsilon_{2 \nu} \bar{u}\left(p_{3}\right) \\
& \times\left(i \Gamma^{(\gamma \ell \ell) \mu}\left(p_{3}, p_{t}\right) \frac{i\left(p_{t}+m_{\ell}\right)}{t-m_{\ell}^{2}+i \epsilon} i \Gamma^{(\gamma \ell \ell) v}\left(p_{t^{\prime}}-p_{4}\right)\right. \\
& q=p^{\prime}-p . \\
&\left.+i \Gamma^{(\gamma \ell \ell) v}\left(p_{3}, p_{u}\right) \frac{i\left(p_{u}+m_{\ell}\right)}{u-m_{\ell}^{2}+i \epsilon} i \Gamma^{(\gamma \ell \ell) \mu}\left(p_{u^{\prime}}-p_{4}\right)\right) v\left(p_{4}\right) . \\
& i \Gamma_{\mu}^{(\gamma \ell \ell)}\left(p^{\prime}, p\right)=-i e\left[\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 m_{\ell}} \sigma_{\mu \nu} q^{\nu} F_{2}\left(q^{2}\right)+\frac{1}{2 m_{\ell}} \gamma^{5} \sigma_{\mu \nu} q^{\nu} F_{3}\left(q^{2}\right)\right],
\end{aligned}
$$

In the $q^{2} \rightarrow 0$ limit: $F_{1}(0)=1, F_{2}(0)=a_{\ell}$ and $F_{3}(0)=\mathrm{d}_{\ell} 2 m_{\ell} / e$
The photons from the ultraperipheral collisions (UPC) have small virtualities. They are almost on-shell photons and are in the $q^{2} \rightarrow 0$ limit

Extracting a_{τ}

PLB 809 (2020) 135682

PRD 102, 113008 (2020)

Detectors

ATLAS Detector

Zero Degree Calorimeter (ZDC)

PbPb data taking during LHC Run 2

2015: $0.5 \mathrm{nb}^{-1}$ used in physics

2018: $1.7 \mathrm{nb}^{-1}$ used in physics

Analysis strategy

Decay mode	Meson resonance	$\mathcal{B}[\%]$
$\left.\begin{array}{l} \tau^{-} \rightarrow \mathrm{e}^{-} \bar{v}_{\mathrm{e}} \nu_{\tau} \\ \tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} \nu_{\tau} \end{array}\right\} \sim 35 \%$		17.8
		17.4
$\left.\begin{array}{l} \left.\begin{array}{l} \tau^{-} \rightarrow \mathrm{h}^{-} v_{\tau} \\ \tau^{-} \rightarrow \mathrm{h}^{-} \pi^{0} v_{\tau} \\ \tau^{-} \rightarrow \mathrm{h}^{-} \pi^{0} \pi^{0} v_{\tau} \end{array}\right\} \sim 50 \% \\ \tau^{-} \rightarrow \mathrm{h}^{-} \mathrm{h}^{+} \mathrm{h}^{-} \nu_{\tau} \\ \tau^{-} \rightarrow \mathrm{h}^{-} \mathrm{h}^{+} \mathrm{h}^{-} \pi^{0} v_{\tau} \end{array}\right\} \sim 15 \%$ Other modes with hadrons		11.5
	$\rho(770)$	26.0
	$\mathrm{a}_{1}(1260)$	9.5
	$\mathrm{a}_{1}(1260)$	9.8
		4.8
		3.2
All modes containing hadrons		64.8

- Use $1.44 \mathrm{nb}^{-1}$ ultraperipheral leadlead collisions data collected in 2018
- Target the $\gamma \gamma \rightarrow \tau \tau$ events with one leptonic decay (as trigger) and one hadronic
- The p_{T} of τ in this analysis is low ($p_{T}^{v i s}<10 \mathrm{GeV}$ for most of τ)
- Use one track or three tracks to tag hadronic τ
- Fit to the lepton $(e / \mu) \mathrm{p}_{\mathrm{T}}$ to exact a_{τ}

Event selections

Trigger: $p_{\mathrm{T}}^{\mu}>4 \mathrm{GeV}, \mathrm{MET}<50 \mathrm{GeV} ; \quad \sum E_{\mathrm{T}}^{\mathrm{FCAL}}<3 \mathrm{GeV}$ on any side of FCal $(3.2<|\eta|<4.9)$

Offline event selections:

- Muon, $p_{\mathrm{T}}^{\mu}>4 \mathrm{GeV}$
- Electron, $p_{\mathrm{T}}^{e}>4 \mathrm{GeV}$
- Track, $p_{\mathrm{T}}^{\text {trk }}>100 \mathrm{MeV}$

Event categorization

- Muon+1track
- Muon+3track
- Muon+electron

Data: On0n ZDC selection to suppress photonuclear/hadronic backgrounds

Simulation reweighted from $0 n 0 n+0 n X n+X n X n$ to $0 n 0 n$ with datadriven weights

Veto additional clusters and tracks

$$
\begin{aligned}
& p_{\mathrm{T}}^{\text {cluster }}>1 \mathrm{GeV}(|\eta|<2.5) ; \\
& p_{\mathrm{T}}^{\text {cluster }}>100 \mathrm{MeV}(2.5<|\eta|<4.5) ;
\end{aligned}
$$

ZDC selections

PRC 104, 024906 (2021)

Distribution of ZDC energies in events selected in the fiducial region, normalized by the beam energy per-nucleon of 2.51 TeV

Signal and backgrounds

- Monte Carlo simulations:
- Signal $\gamma \gamma \rightarrow \tau \tau$: Starlight+Tauola (Pythia8+Photos for QED FSR)
- Background $\gamma \gamma \rightarrow \mu \mu$: Starlight+Pythia8
- Background $\gamma \gamma \rightarrow \mu \mu(\gamma)$: Madgraph5 (reweighted to $\mathrm{Pb}+\mathrm{Pb}$ photon flux)
- All samples reweighted to photon flux from SuperChic3
- Data-driven estimation of diffractive photonuclear events

$$
\gamma \gamma \rightarrow \mu \mu(\gamma) \text { events }
$$

Diffractive photonuclear process

Photonuclear background

- Data-driven estimation of diffractive photonuclear events in $\mu+1$ track SR and $\mu+3$ track SR
- Templates built from control regions similar to SRs, but requiring an additional track with $\mathrm{pT}<500 \mathrm{MeV}$ and allowing 0nXn ZDC events
- Normalization: relax cluster veto. Use region with 4-8 unmatched clusters

$\gamma \gamma \rightarrow \tau \tau$ event candidate ATLAS collision event

Run: 366268
Event: 3305670439
2018-11-18 16:09:33 CEST

Muon

Post-fit distributions

arXiv:2204.13478

Post-fit distributions

arXiv:2204.13478

Results: $\gamma \gamma \rightarrow \tau \tau$ signal strength

Results: a_{τ}

$\gamma Y \rightarrow \mu \mu / e e$

Signal and backgrounds for $\gamma \gamma \rightarrow \mu \mu / \mathrm{ee}$

Signal

Signal with FSR

Dissociative backgrounds

- Dissociative backgrounds: estimated with data-driven method.
- Templates taken from LPair ($\mu \mu$), SuperChic4+Pythia8 (ee)

$\gamma Y \rightarrow \mu \mu$ Results

- The cross-sections are measured as a function of $m \mu \mu$ and $|y \mu \mu|$
- Data is compared with STARlight
- MC simulation of $\mathrm{YY} \rightarrow$ $\mu+\mu$ - process w/o FSR

$Y Y \rightarrow e e$ Results

- Differential cross sections measured in $\mathrm{m}_{\mathrm{ee}},\left|\mathrm{y}_{\mathrm{ee}}\right|,\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{e}}\right\rangle,|\cos \theta *|$
- STARlight 3.13 (SuperChic 3.05) is systematically lower (higher) than data

$\mathrm{YY} \rightarrow \mathrm{YY}$

$\mathrm{YY} \rightarrow \mathrm{YY}$

Fiducial cross sections are measured in $\mathrm{E}_{\mathrm{T}}>2.5 \mathrm{GeV}, \mathrm{m}_{\mathrm{yy}}>5 \mathrm{GeV},\left|\eta_{\mathrm{y}}\right|<2.4$, $\mathrm{p}_{\mathrm{T}} \mathrm{YY}<1 \mathrm{GeV}$

$\mathrm{Y} Y \rightarrow \mathrm{Y}$: search for axion-like particles

The most stringent limit established for ALP masses between 6-100 GeV

LHC Run 3 for PbPb

Run 3 luminosity targets

Indicative!

Mode	GPDs
$\mathrm{p}-\mathrm{p}$	$250 / \mathrm{fb}$
$\mathrm{Pb}-\mathrm{Pb}$	$7 / \mathrm{nb}(13 / \mathrm{nb}$ by LS4)
$\mathrm{p}-\mathrm{Pb}$	$0.5 / \mathrm{pb}(\sim 1 / \mathrm{pb}$ by LS4)
$\mathrm{O}-\mathrm{O}$	$0.5 / \mathrm{nb}$
$\mathrm{p}-\mathrm{O}$	LHCf $1.5 / \mathrm{nb}$

Shutdown/Technical stop Protons physics
Ions
Commissioning with beam
Hardware commissioning/magnet training

Expect to have $7 \mathrm{nb}^{-1}$ for LHC Run 3 for PbPb data

Summary

- Observation of $\gamma \gamma \rightarrow \tau \tau$ in ultraperipheral lead-lead collisions from ATLAS, arXiv:2204.13478, accepted by PRL
- Set constraints on the τ anomalous magnetic moment
- UPC events are very clean and ideal for precision studies. Opening physics opportunities for QED studies at hadron collider
- Constraints on a_{τ} are competitive with LEP results. Will be improved with more data

- $\gamma Y \rightarrow e e:$ arXiv:2207.12781, submitted to JHEP
- $\mathrm{y} \rightarrow \rightarrow \mu \mu$: Phys. Rev. C 104 (2021) 024906
- $\mathrm{YY} \rightarrow \mathrm{rT}:$ arXiv:2204.13478, accepted by PRL
- $\mathrm{YY} \rightarrow \mathrm{YY}:$ JHEP 03 (2021) $\underline{243}$

Backup

Measure τ g-2 at hadron collider

Proposed by Jesse Liu and Lydia Beresford
First proposed by: F. del Aguila, F. Cornet, and J. I. Illana,

Phys. Rev. D 102, 113008 (2020)
Phys. Lett. B 271, 256 (1991)

Measure the process of $\mathrm{Y} \mathrm{Y} \rightarrow \mathrm{TT}$ in ultraperipheral lead-lead collisions

Cross section parameterization is also studied:
M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, PLB 809 (2020) 135682

Zero Degree Calorimeter Module

LHCC/2007-001

- Beam impinges on tungsten plates at bottom of module, and showers.
- Quartz rods pick up Cerenkov light from the shower and pipe it to multi-anode phototube at top of module.
- Phototubes measure light from strips through four air light pipe funnels.

ZDC fractions

Observed
fractions

$$
\left[\begin{array}{c}
f_{0 n 0 n}^{\prime} \\
f_{\mathrm{X} 0 n}^{\prime} \\
f_{\mathrm{X} n \mathrm{X} n}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\left(1-p_{\mathrm{S}}\right)\left(1-p_{\mathrm{S}}\right)\left(1-p_{\mathrm{M}}\right) & 0 & 0 \\
2 p_{\mathrm{S}}\left(1-p_{\mathrm{S}}-p_{\mathrm{M}}+p_{\mathrm{M}} p_{\mathrm{S}} / 2\right) & \left(1-p_{\mathrm{S}}\right)\left(1-p_{\mathrm{M}}\right) & 0 \\
p_{\mathrm{M}}+p_{\mathrm{S}}^{2} & p_{\mathrm{M}}+p_{\mathrm{S}}-p_{\mathrm{M}} p_{\mathrm{S}} & 1
\end{array}\right]\left[\begin{array}{c}
f_{0 n 0 n} \\
f_{\mathrm{X} n 0 n} \\
f_{\mathrm{X} n \mathrm{X} n} .
\end{array}\right]
$$

- p_{S} : probability of single disassociation
- p_{M} : probability of mutual disassociation

Pre-fit impact on a :

Post-fit impact on a :$\theta=\hat{\theta}+\Delta \hat{\theta}$ $\theta=\hat{\theta}-$ ATLAS

Systematics
Nuis. Param. Pull
muon L1 trigger (stat) muon L1 trigger (sys) tau decay modeling tracking eff. (overall ID material) muon momentum scale photon flux uncertainty electron efficiency (sys)
muon sagitta (ρ) muon sagitta (res. bias) tracking eff. (PPO material) electron efficiency (stat) egamma energy scale egamma energy res. topocluster efficiency muon momentum res. (ID)
$\mathrm{Pb}+\mathrm{Pb} \sqrt{\mathrm{s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}, 1.44 \mathrm{nb}^{-1}$

