

Haifeng Li 李海峰

Shandong University, Qingdao 山东大学(青岛)

MBI, Shanghai, August 25, 2022

Motivation and how to measure τ g-2

Motivation for measuring τ g-2

Magnetic moment of a particle:

$$\mu = g \frac{q}{2m} \mathbf{S}$$

 α / π Schwinger 1948

Possible new physics

Anomalous magnetic moment:

$$a_l \equiv \frac{g_l - 2}{2}$$

Electron g-2: -2.5σ tension with the SM, Science 360, 191 (2018)

Muon g-2: +4.2σ tension with the SM

Phys. Rev. Lett. 126, 141801

Motivation for measuring τ g-2

Magnetic moment of a particle:

$$\mu = g \frac{q}{2m} \mathbf{S}$$

Tau is 280× more sensitive to SUSY than muon

Martin, Wells, Phys. Rev. D64 (2001) 035003

$$\delta a_\ell \sim m_\ell^2/M_{\rm SUSY}^2$$

$$m_\tau^2/m_\mu^2 \sim 280$$

How to measure τ g-2 at collider

Measure the process with τ - γ - τ vertex to get a_{τ} :

$$a_{\tau} \equiv \frac{g_{\tau} - 2}{2}$$

Before LHC, the most precise measurement of a_T is from LEP

Experimental measurement: $a_{\tau} = -0.018 \pm 0.017$,

DELPHI, Eur. Phys. J. C35: 159-170, 2004

SM prediction :
$$a_{\tau, \, \text{SM}}^{\text{pred}} = 0.001\,177\,21\,(5)$$

Eidelman, Passera, Mod. Phys. A22:159-179, 2007

Ultraperipheral Collisions

- EM interactions become dominant at large impact parameters, b>2R_A, where R_A is the ion radius. Such collisions are usually referred to as ultraperipheral collisions (UPC)
- UPC of lead-lead could be used as a lowenergy photon-photon collider
- Measure the process of γγ→ττ in ultraperipheral lead-lead collisions
- Cross section enhanced by $Z^4 \sim 4.5 \times 10^7$ with $Z_{Pb} = 82$

Extracting a_{τ}

The amplitude of $\gamma\gamma \to \ell^+\ell^-$:

PLB 809 (2020) 135682

$$\mathcal{M} = (-i) \, \epsilon_{1\mu} \epsilon_{2\nu} \, \bar{u}(p_3)$$

$$\times \left(i \Gamma^{(\gamma\ell\ell)}{}^{\mu}(p_3, p_t) \frac{i(p_t + m_\ell)}{t - m_\ell^2 + i\epsilon} i \Gamma^{(\gamma\ell\ell)}{}^{\nu}(p_{t'} - p_4) \right)$$

$$+ i \Gamma^{(\gamma\ell\ell)}{}^{\nu}(p_3, p_u) \frac{i(p_u + m_\ell)}{u - m_\ell^2 + i\epsilon} i \Gamma^{(\gamma\ell\ell)}{}^{\mu}(p_{u'} - p_4) \right) \nu(p_4) .$$

$$q = p' - p.$$

$$i \Gamma^{(\gamma\ell\ell)}_{\mu}(p', p) = -ie \left[\gamma_{\mu} F_1(q^2) + \frac{i}{2m_\ell} \sigma_{\mu\nu} q^{\nu} F_2(q^2) \right. + \frac{1}{2m_\ell} \gamma^5 \sigma_{\mu\nu} q^{\nu} F_3(q^2) \right],$$

In the $q^2 \rightarrow 0$ limit: $F_1(0) = 1$, $F_2(0) = a_\ell$ and $F_3(0) = d_\ell 2m_\ell/e$

The photons from the ultraperipheral collisions (UPC) have small virtualities. They are almost on-shell photons and are in the $q^2 \rightarrow 0$ limit

Extracting a_{τ}

Detectors

ATLAS Detector

Zero Degree Calorimeter (ZDC)

PbPb data taking during LHC Run 2

Total Integrated Luminosity [nb⁻¹] **ATLAS Online Luminosity** $\sqrt{s_{NN}} = 5.0 \text{ TeV}$ LHC Delivered (Pb+Pb) **ATLAS Recorded** Total Delivered: 1.80 nb⁻¹ 1.5 Total Recorded: 1.76 nb⁻¹ 06/11 13/11 20/11 27/11 04/12 Day in 2018

2015: 0.5 nb⁻¹ used in physics

2018: 1.7 nb⁻¹ used in physics

Analysis strategy

Decay mode	Meson resonance	\mathcal{B} [%]
$\tau^- \to e^- \overline{\nu}_e \nu_{\tau}$		17.8
$\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		17.4
$ au^- ightarrow ext{h}^- au_ au$		11.5
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$ ~ 50%	$\rho(770)$	26.0
$\tau^- \to h^- \pi^0 \pi^0 \nu_{\tau}$	$a_1(1260)$	9.5
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	$a_1(1260)$	9.8
$\tau^- \to h^- h^+ h^- \pi^0 \nu_{\tau}$ $\sim 15\%$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

- Use 1.44 nb⁻¹ ultraperipheral leadlead collisions data collected in 2018
- Target the γγ → ττ events with one leptonic decay (as trigger) and one hadronic
- The p_T of τ in this analysis is low $(p_T^{vis} < 10 \text{ GeV for most of } \tau)$
- Use one track or three tracks to tag hadronic τ
- Fit to the lepton (e/μ) p_T to exact a_{τ}

Event selections

Trigger: $p_{\rm T}^{\mu} > 4$ GeV, MET < 50 GeV; $\sum E_{\rm T}^{\rm FCAL} < 3$ GeV on any side of FCal (3.2 < $|\eta| < 4.9$)

Offline event selections:

- Muon, $p_{\mathrm{T}}^{\mu} > 4 \text{ GeV}$
- Electron, $p_{\rm T}^e > 4 \; {\rm GeV}$
- Track, $p_{\mathrm{T}}^{\mathrm{trk}} > 100 \ \mathrm{MeV}$

Event categorization

- Muon+1track
- Muon+3track
- Muon+electron

Data: 0n0n ZDC selection to suppress photonuclear/hadronic backgrounds

Simulation reweighted from 0n0n+0nXn+XnXn to 0n0n with datadriven weights

Veto additional clusters and tracks

$$p_{\rm T}^{\rm cluster} > 1~{\rm GeV}~(|\eta| < 2.5);$$
 $p_{\rm T}^{\rm cluster} > 100~{\rm MeV}~(2.5 < |\eta| < 4.5);$

ZDC selections

Distribution of ZDC energies in events selected in the fiducial region, normalized by the beam energy per-nucleon of 2.51 TeV

Signal and backgrounds

- Monte Carlo simulations:
 - Signal $\gamma\gamma \rightarrow \tau\tau$: Starlight+Tauola (Pythia8+Photos for QED FSR)
 - Background $\gamma\gamma \rightarrow \mu\mu$: Starlight+Pythia8
 - Background $\gamma\gamma \rightarrow \mu\mu(\gamma)$: Madgraph5 (reweighted to Pb+Pb photon flux)
 - All samples reweighted to photon flux from SuperChic3
- Data-driven estimation of diffractive photonuclear events

Diffractive photonuclear process

Photonuclear background

- Data-driven estimation of diffractive photonuclear events in μ +1track SR and μ +3track SR
- Templates built from control regions similar to SRs, but requiring an additional track with pT < 500 MeV and allowing 0nXn ZDC events
- Normalization: relax cluster veto. Use region with 4-8 unmatched clusters

Run: 366268

Event: 3305670439

2018-11-18 16:09:33 CEST

Muon

Post-fit distributions

Post-fit distributions

Results: $\gamma\gamma \to \tau\tau$ signal strength

Results: a_{τ}

γγ→μμ/ee

Signal and backgrounds for γγ→μμ/ee

Signal

Signal with FSR

Dissociative backgrounds

- Dissociative backgrounds: estimated with data-driven method.
- Templates taken from LPair (μμ), SuperChic4+Pythia8 (ee)

γγ→μμ Results

Haiteng Li (Shandong University)

- The cross-sections are measured as a function of $m\mu\mu$ and $|y\mu\mu|$
- Data is compared with STARlight
- MC simulation of $\gamma\gamma \rightarrow \mu + \mu$ process w/o FSR

γγ→ee Results

- Differential cross sections measured in m_{ee}, |y_{ee}|, <p_Te>, |cosθ*|
- STARlight 3.13 (SuperChic 3.05) is systematically lower (higher) than data

Fiducial cross sections are measured in E $_T$ > 2.5 GeV, $m_{\gamma\gamma}$ > 5 GeV, $|\eta_{\gamma}|$ < 2.4, $p_T^{\gamma\gamma}$ < 1 GeV

γγ→ γγ: search for axion-like particles

JHEP 03 (2021) 243

The most stringent limit established for ALP masses between 6-100 GeV

LHC Run 3 for PbPb

Run 3 luminosity targets

Indicative!

Mode	GPDs
p-p	250/fb
Pb-Pb	7/nb (13/nb by LS4)
p-Pb	0.5/pb (~1/pb by LS4)
0-0	0.5/nb
p-O	LHCf 1.5/nb

Expect to have 7 nb⁻¹ for LHC Run 3 for PbPb data

Summary

- Observation of $\gamma\gamma \to \tau\tau$ in ultraperipheral lead-lead collisions from ATLAS, arXiv:2204.13478, accepted by PRL
- Set constraints on the τ anomalous magnetic moment
- UPC events are very clean and ideal for precision studies. Opening physics opportunities for QED studies at hadron collider

• Constraints on a_{τ} are competitive with LEP results. Will be improved with

more data

- γγ→ee: <u>arXiv:2207.12781</u>, submitted to JHEP
- γγ→μμ: Phys. Rev. C 104 (2021) 024906
- γγ→ττ: <u>arXiv:2204.13478</u>, accepted by PRL
- γγ→γγ: JHEP 03 (2021)
 243

Backup

Measure τ g-2 at hadron collider

Proposed by Jesse Liu and Lydia Beresford

First proposed by: F. del Aguila, F. Cornet, and J. I. Illana,

Phys. Rev. D 102, 113008 (2020)

Phys. Lett. B 271, 256 (1991)

Measure the process of γγ→ττ in ultraperipheral lead-lead collisions

Cross section parameterization is also studied:

M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, PLB 809 (2020) 135682

Zero Degree Calorimeter Module

LHCC/2007-001

- Beam impinges on tungsten plates at bottom of module, and showers.
- Quartz rods pick up Cerenkov light from the shower and pipe it to multi-anode phototube at top of module.
- Phototubes measure light from strips through four air light pipe funnels.

ZDC fractions

Observed fractions

$$\begin{bmatrix} f'_{0n0n} \\ f'_{Xn0n} \\ f'_{XnXn} \end{bmatrix} = \begin{bmatrix} (1-p_S)(1-p_S)(1-p_M) & 0 & 0 \\ 2p_S(1-p_S-p_M+p_Mp_S/2) & (1-p_S)(1-p_M) & 0 \\ p_M+p_S^2 & p_M+p_S-p_Mp_S & 1 \end{bmatrix} \begin{bmatrix} f_{0n0n} \\ f_{Xn0n} \\ f_{XnXn} \end{bmatrix}$$

- $p_{\rm S}$: probability of single disassociation
- p_{M} : probability of mutual disassociation

EM pileup

Corrected

fractions

Systematics