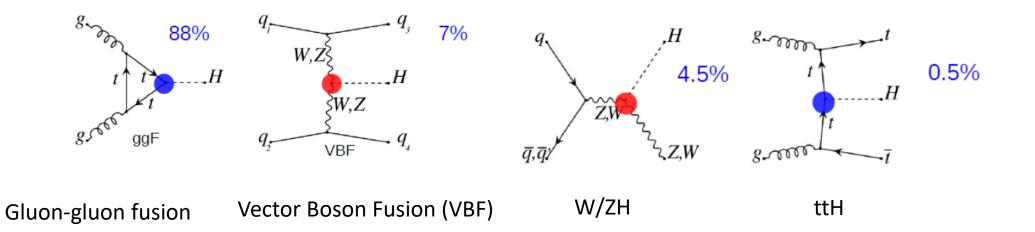
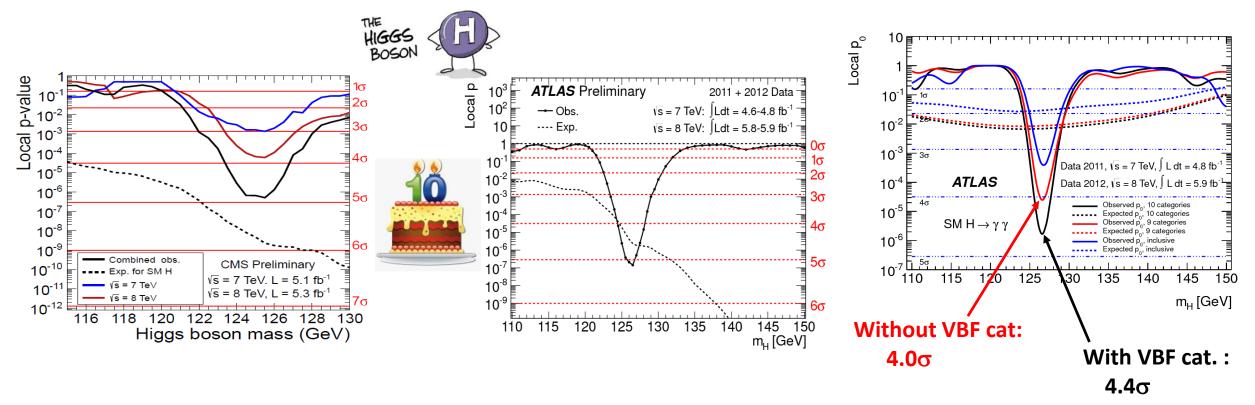
Study of VBF Higgs via Di-photon Decay at ATLAS


Yaquan Fang (方亚泉)

Institute of High Energy Physics, Beijing 22-25 August, 2022 Multi-Boson Interactions 2022

School of Physics and Astronomy, Shanghai Jiao Tong University

Introduction

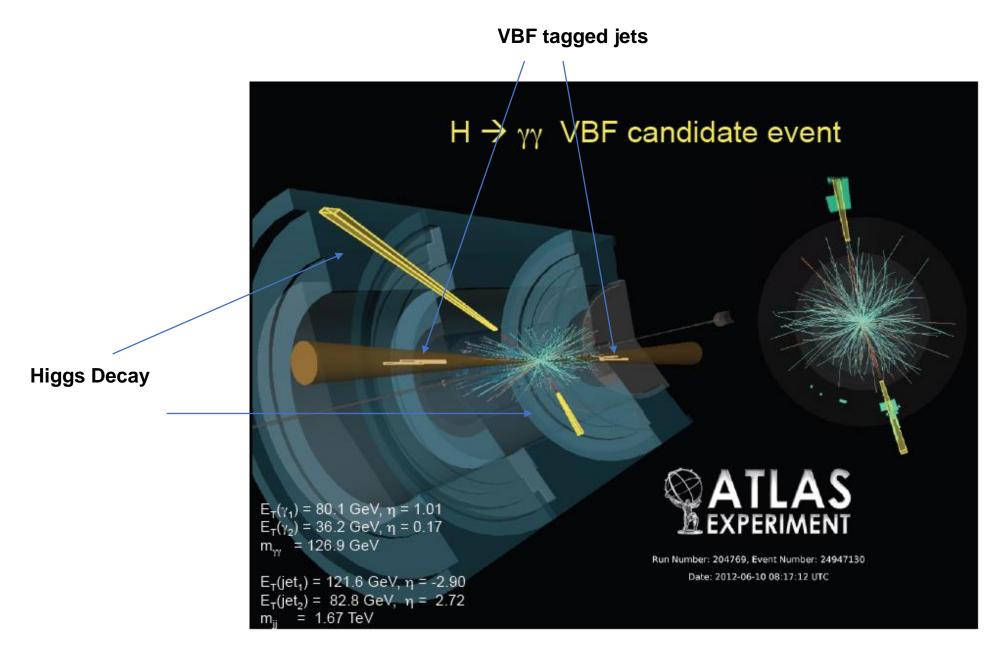


After the Higgs discovery, it is important to study the Higgs property according to its production, decays, coupling, spin

> VBF provides us an opportunity to understand:

- Higgs production mode
- Electro-weak production
- Search for new physics

Contribution of VBF H $\rightarrow \gamma\gamma$ to Higgs Discovery in ATLAS

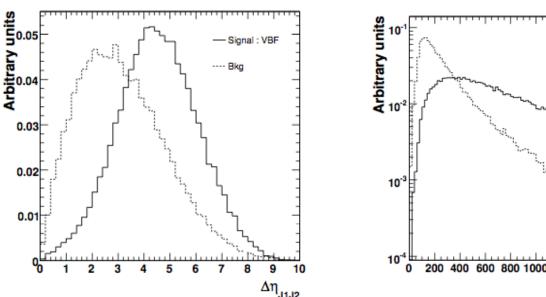


Higgs boson discovered 10 years ago shows that SM is a successful one in particle physics.

 \succ Higgs boson is crucial to give mass to other particles.

 \gg VBF H $\rightarrow \gamma\gamma$ played an important role in the Higgs discovery in ATLAS.

A Candidate of VBF Higgs Event Decaying into Two Photons



4

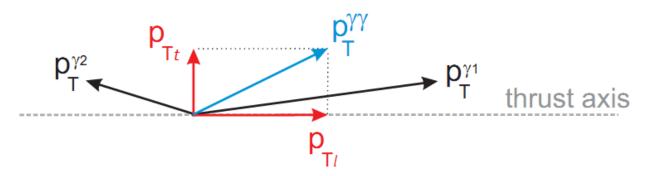
Event Signature of VBF Higgs

- Two forward highly boosted jets.
 - High invariant mass of the di-jet (M_{jj}) and rapidity gap between the two jets ($\Delta \eta_{ij}$)
- The jet activities are suppressed between two VBF jets.
 - Central jet veto
- Multivariate analyses (MVA) to improve

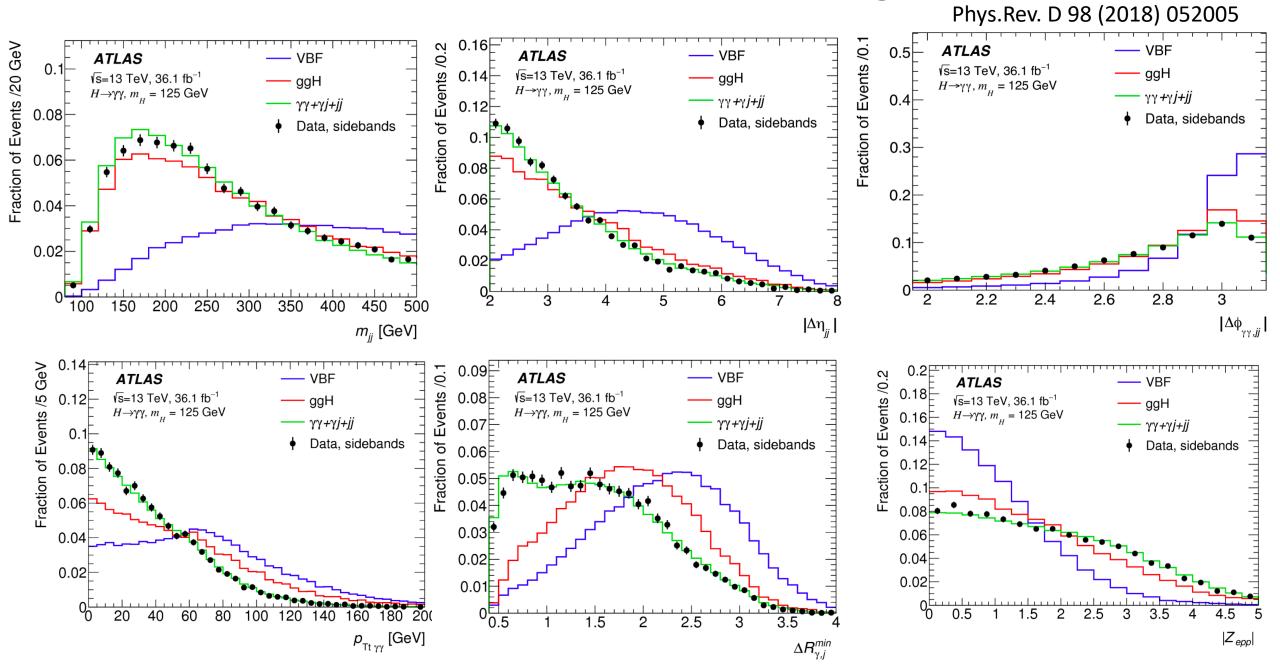
the sensitivities.

Wisconsin Pheno. Group: T. Han, D.L. Rainwater, D. Zeppenfeld et al.

Central jet veto initially suggested in PRD 42 3052 (1990)

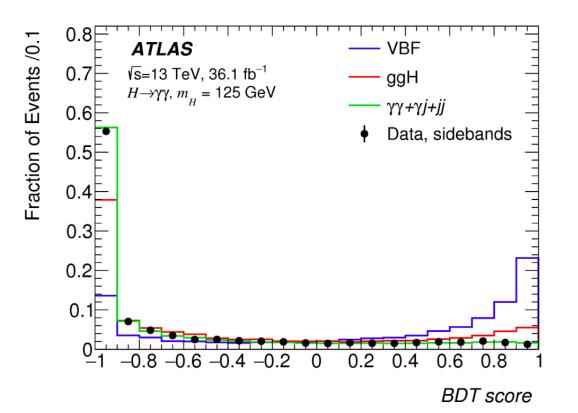

M.11.12 [GeV]

Example: discriminating variables used in ATLAS for $H \rightarrow \gamma \gamma$ analysis


• 6 variables below used to separate signal from background

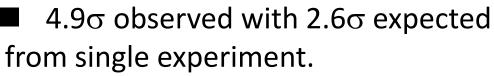
Variables	Definition	Separation power
m _{jj}	Invariant mass of dijet	0.256
$\Delta \eta_{jj}$	Pseudo-rapidity separation of dijet	0.130
$\Delta \Phi_{\gamma\gamma,jj}$	Azimuthal angle between diphoton and dijet system	0.199
p_{Tt}	Diphoton p_T projected perpendicular to the diphoton thrust axis	0.235
$\Delta R^{min}_{\gamma,j}$ $n^{Zeppenfeld}$	Minimum ΔR between one of the two leading photons and the corresponding leading jets	0.185
$\eta^{Zeppenfeld}$	$ \eta_{\gamma\gamma} - 0.5 * (\eta_{j1} + \eta_{j2}) $	0.126

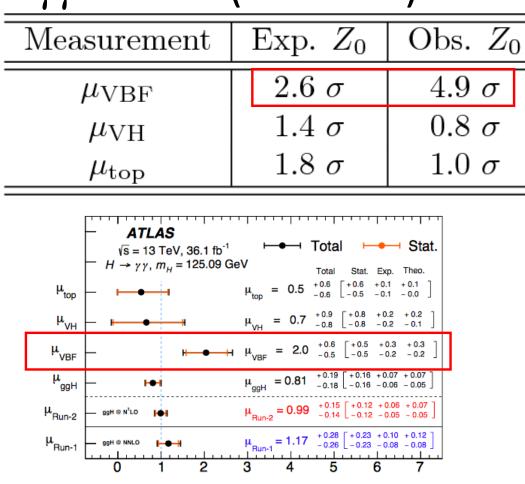
- Separation power: $\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_s(y) \hat{y}_b(y))^2}{\hat{y}_s(y) + \hat{y}_b(y)} dy$ > two forward jet $\rightarrow \text{large } \Delta \eta_{ij}^2$
 - \succ high p_T and large $\Delta \eta_{ii}$ jets \rightarrow large m_{ii}
 - > central diphoton and forward dijet \rightarrow large $\Delta R^{min}_{v,i}$, low η^{Zepp}
 - > two photons balancing high p_T jets \rightarrow high p_{Tt}



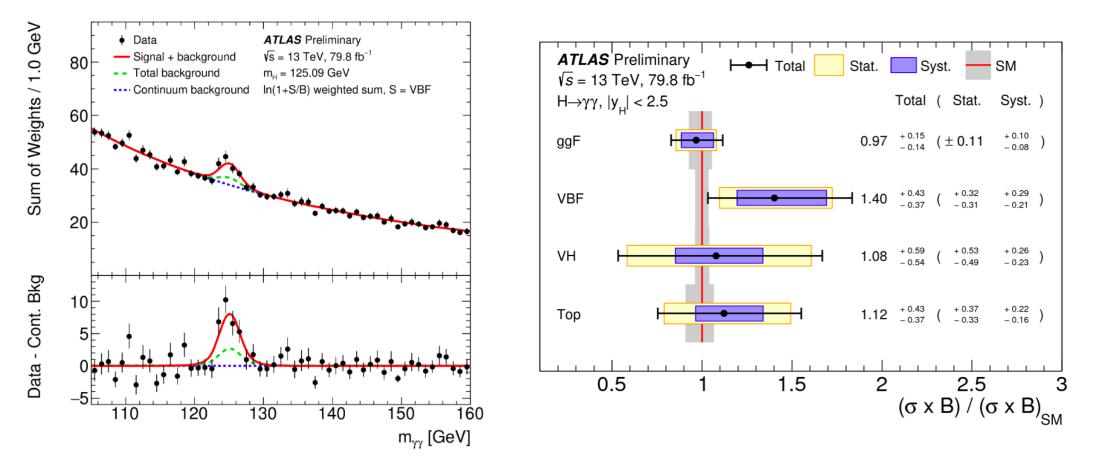
Distributions of the discriminating variables




MVA method: Training/optimization

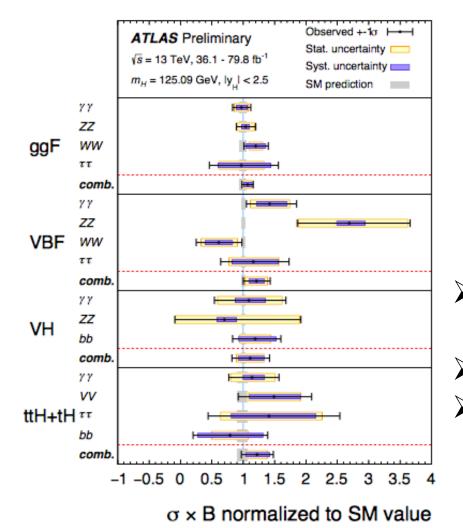

- [120,130] GeV $m_{\gamma\gamma}$ window for data is blinded for training and optimization.
- Signal : VBF 125 GeV.
- Background :
 - $\gamma\gamma$: SHERPA Monte-Carlo .
 - γjet+jets : data with at least one not isolated photon (reviso).
 - The fraction of the two components above are obtained from data-driven method.
 - Overall contribution is normalized to the data.
- For the optimization, both sideband fit from data and MC+revIso are tested
- Divide events into 1-2 categories according to BDT scores; The improvement is above 10-20% w.r.t cut based one.

ATLAS RUN2 VBF $H \rightarrow \gamma \gamma$ results (36.1 fb⁻¹)



The signal strength is ~2xSM, which is still consistent with SM prediction within uncertainties.
 Published at Phys. Rev. D 98, 052005 (2018)

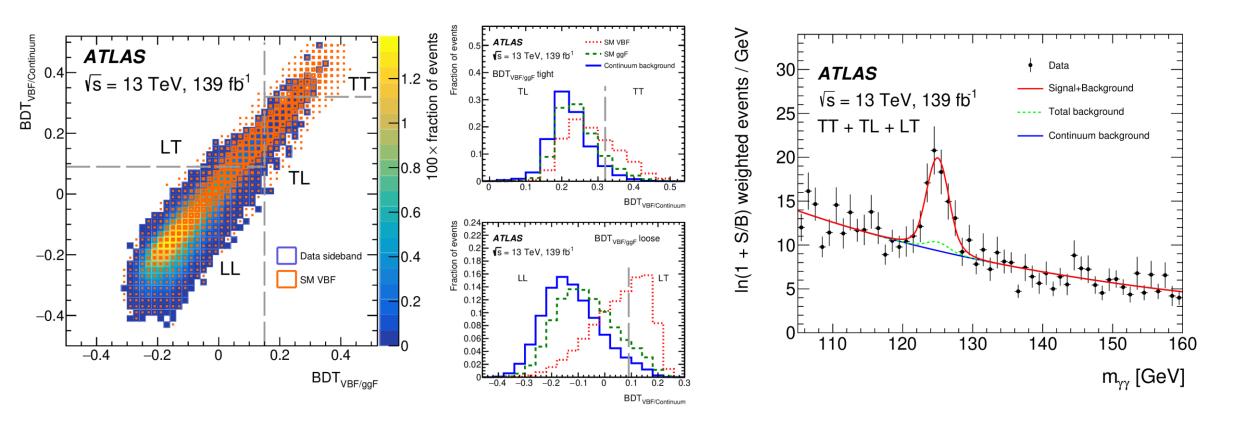
RUN2 VBF $H \rightarrow \gamma \gamma$ results (79.8 fb⁻¹)


ATLAS-CONF-2018-028

The signal strength is well consistent with SM prediction within uncertainties

Combination of different channels

ATLAS-CONF-2018-031



Process	Value		Uncertainty [pb]					Significance
$(y_H < 2.5)$	[pb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[pb]	obs. (exp.)
ggF	47.8	± 4.0	(± 3.1)	$^{+2.7}_{-2.2}$	± 0.9	± 1.3)	44.7 ± 2.2	-
VBF	4.25	$^{+0.77}_{-0.74}$	(± 0.63)	$^{+0.39}_{-0.35}$	$^{+0.25}_{-0.21}$	(+0.14)	3.515 ± 0.075	6.5(5.3)
WH	1.89	$^{+0.63}_{-0.58}$	$\binom{+0.45}{-0.42}$	$^{+0.29}_{-0.28}$	$^{+0.25}_{-0.16}$	(+0.23)	1.204 ± 0.024	
ZH	0.59	$^{+0.33}_{-0.32}$	$\binom{+0.27}{-0.25}$	± 0.14	$^{+0.08}_{-0.02}$	± 0.11)	$0.794_{-0.027}^{+0.033}$	$\left. \right\} 4.1 (3.7)$
$t\bar{t}H+tH$	0.71	± 0.15	(± 0.10)	± 0.07	$^{+0.05}_{-0.04}$	(+0.08) (-0.07)	$0.586\substack{+0.034\\-0.050}$	5.8 (5.3)

Combining H→γγ, ZZ*, WW*, one can achieve 6.5σ
 (5.3σ) observed (expected) for VBF Higgs.
 The dominant contribution is from H→γγ.
 The result is well consistent with SM prediction.

Run2 VBF $H \rightarrow \gamma \gamma$ results (139 fb⁻¹)

arXiv: 2208.02338

Two dedicated BDTs are developed to suppress both continuum bkg and ggFusion Higgs.

CP Properties study via VBF H $\rightarrow \gamma\gamma$

arXiv: 2208.02338

Motivation

 ✓ Study the CP structure of interactions between the Higgs boson and EWK gauge bosons

Explored two EFT bases

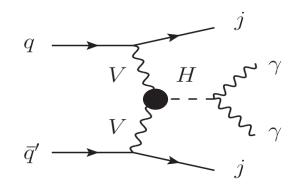
- ✓ HISZ basis
 - After EWSB, EFT Lagrangian can be written as

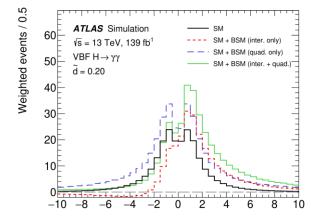
 $\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \tilde{g}_{H\gamma\gamma} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{H\gamma Z} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}^+_{\mu\nu} W^{-\mu\nu}$

• Dimensionless parameters introduced: d and \tilde{d} , with assuming $d = \tilde{d}$

$$\tilde{g}_{H\gamma\gamma} = \tilde{g}_{HZZ} = \frac{1}{2}\tilde{g}_{HWW} = \frac{g}{2m_W}\tilde{d}$$
 and $\tilde{g}_{H\gamma Z} = 0$. $\mathcal{M} = \mathcal{M}_{SM} + \tilde{d} \cdot \mathcal{M}_{CP-odd}$.

✓ Warsaw basis


$$\mathcal{L}_{\text{SMEFT}}^{\text{CP-odd}} \supset \frac{c_{H\tilde{W}}}{\Lambda^2} H^{\dagger} H W^{I}_{\mu\nu} W^{\mu\nu I} + \frac{c_{H\tilde{B}}}{\Lambda^2} H^{\dagger} H B^{A}_{\mu\nu} B^{\mu\nu} + \frac{c_{H\tilde{W}B}}{\Lambda^2} H^{\dagger} \sigma^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$$


• VBF production is dominated by HWW vertex, analysis mainly explores $c_{H\tilde{W}}$

CP sensitive variable

- ✓ Optimal Observable
- ✓ Inputs to Hawk: the 4-momentum of Higgs, two forward jets

$$OO = \frac{2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

Analysis Strategies

Compute OO for :

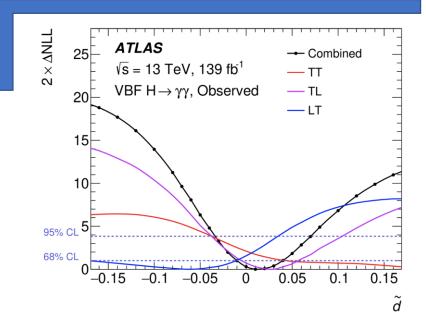
events

Data

✓ 3 (TT,TL,LT cats) x 6 (OO bins)

✓ Compute OO for each data event

Compute OO w/ various \tilde{d} hypotheses

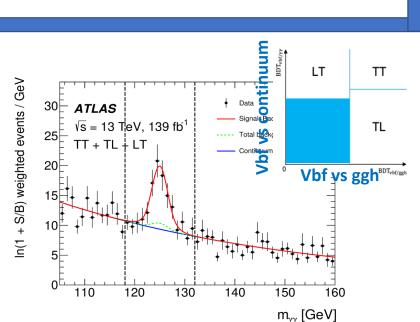

✓ OO distribution for SM VBF is symmetrical.

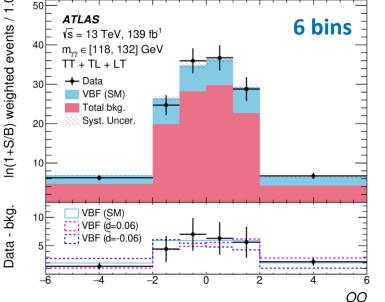
Implementation of the stat. test :

\checkmark Test diff. \tilde{d} or $C_{H\widetilde{W}}$

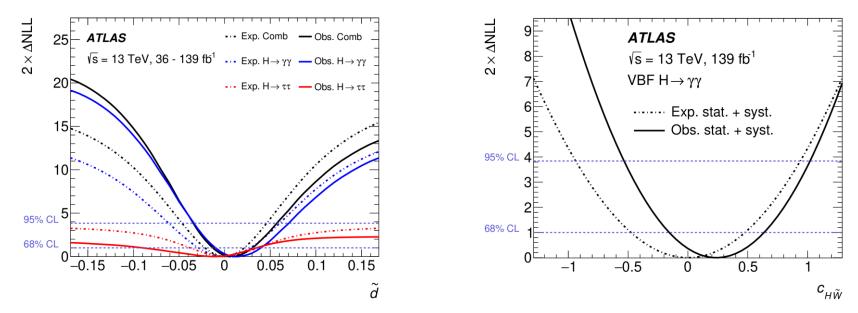
✓ In practice, 18-bin simultaneous fit

✓ Majority of sensitivities from high **OO bins (middle plot)**

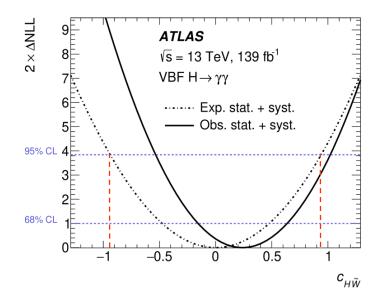


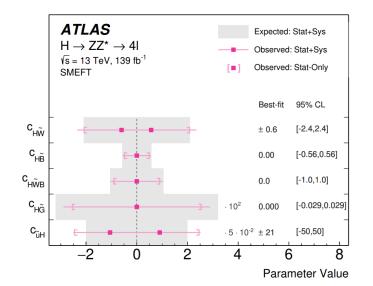

Separate VBF from bkgs:

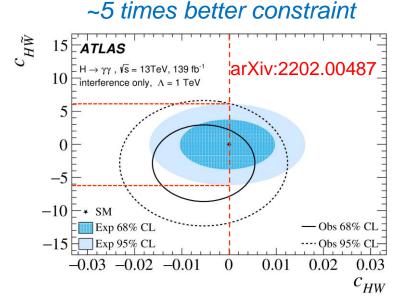
- \checkmark Use m_{yy} as a discriminator
 - ✓ DSCB for VBF/ggF
 - \checkmark 2nd Pol. for continuum bkg.


✓ 2 BDTs : VBF/cont. & VBF/ggF

- ✓ Divide into 3 regions
- 6 variables on page 7

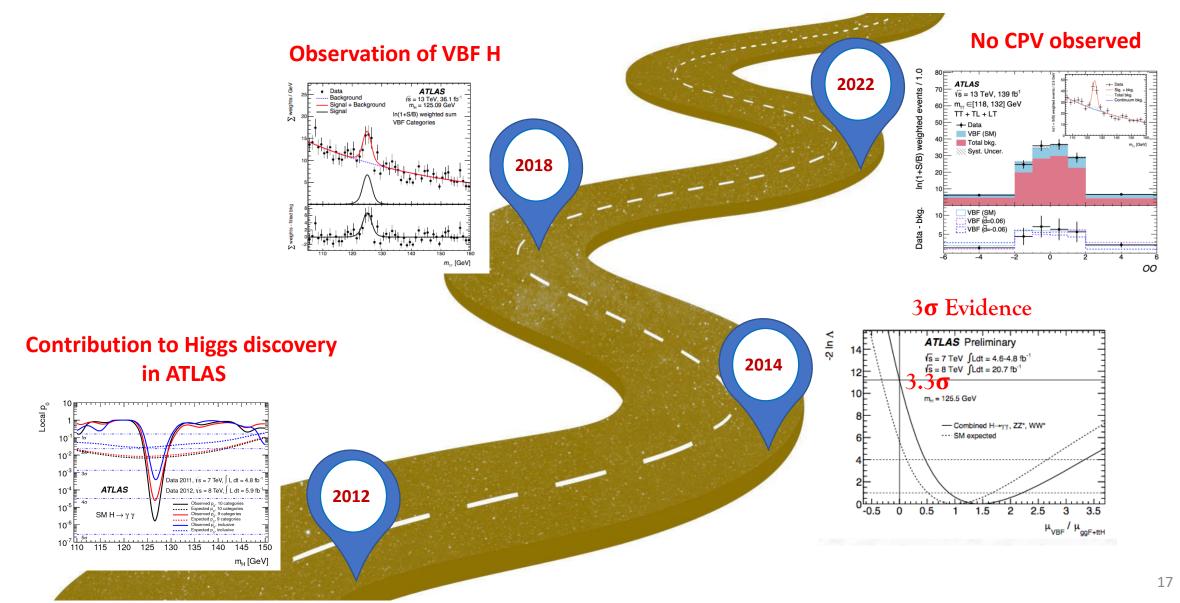

Results




	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)	
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]	
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]	
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	_	[-0.090, 0.035]	-	
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]	
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]	
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]	

- No CP violation is observed.
- Result for \tilde{d} is further combined with $H \rightarrow \tau \tau$ analysis.
- Set most stringent constraints on CP-violation effect in HVV coupling

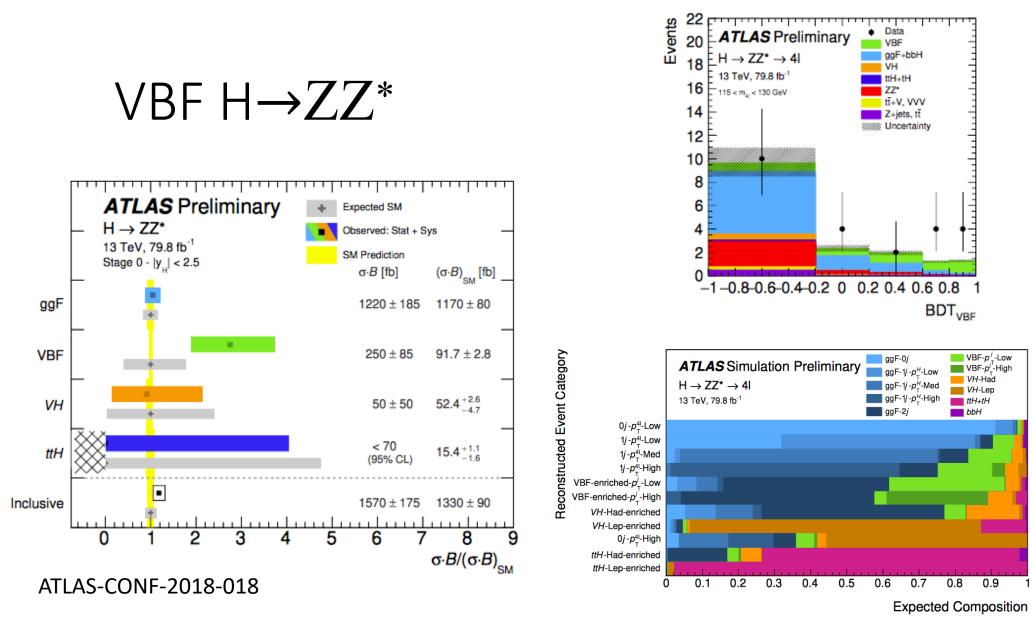
Comparisons with other Results


Channels	Coupling	Observed	Expected
Phys. Rev. D 104,	$c_{\mathrm{H}\square}$	$0.04\substack{+0.43 \\ -0.45}$	$0.00\substack{+0.75\\-0.93}$
052004 (2021)	$c_{\rm HD}$	$-0.73^{+0.97}_{-4.21}$	$0.00^{+1.06}_{-4.60}$
CMS	$c_{\rm HW}$	$0.01\substack{+0.18\\-0.17}$	$0.00\substack{+0.39\\-0.28}$
VBF & VH & H $\rightarrow 4\ell$	$c_{\rm HWB}$	$0.01\substack{+0.20 \\ -0.18}$	$0.00\substack{+0.42\\-0.31}$
	$c_{\rm HB}$	$0.00\substack{+0.05\\-0.05}$	$0.00^{+0.03}_{-0.08}$
68% constraints	$c_{\mathrm{H}\tilde{\mathrm{W}}}$	$-0.23\substack{+0.51\\-0.52}$	$0.00^{+1.11}_{-1.11}$
	с _{НŴВ}	$-0.25\substack{+0.56\\-0.57}$	$0.00^{+1.21}_{-1.21}$
	$c_{\mathrm{H}\tilde{\mathrm{B}}}$	$-0.06\substack{+0.15\\-0.16}$	$0.00\substack{+0.33\\-0.33}$

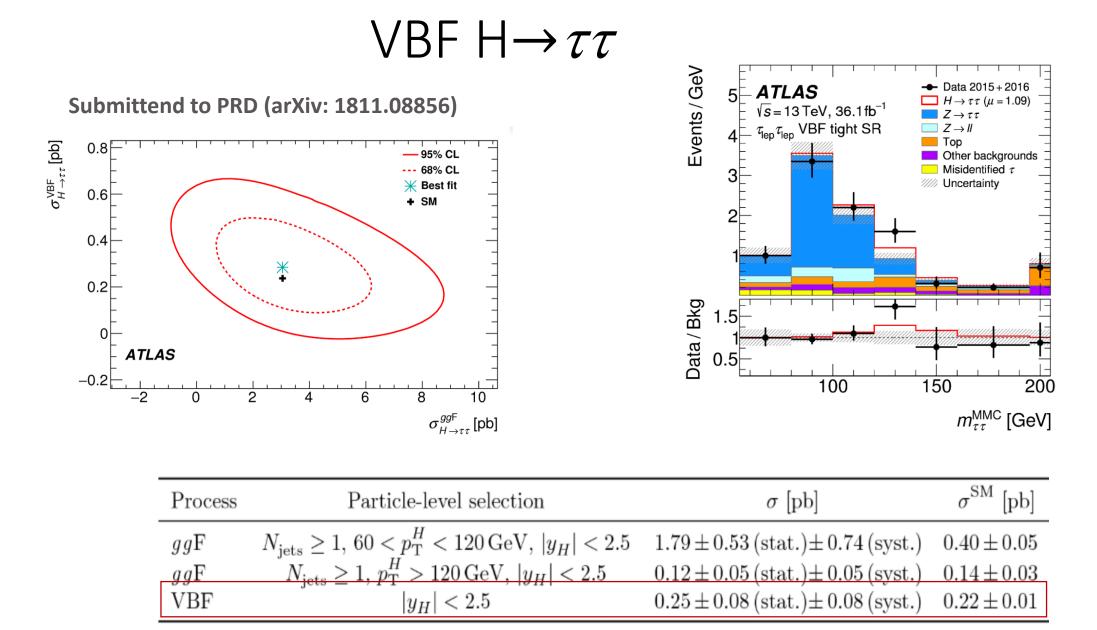
~2 times better constraint

Summary of the 10-Year Path : Study of VBF $H \rightarrow \gamma \gamma$

路漫漫其修远兮, 吾将上下而求索


The road ahead will be long and our climb will be steep

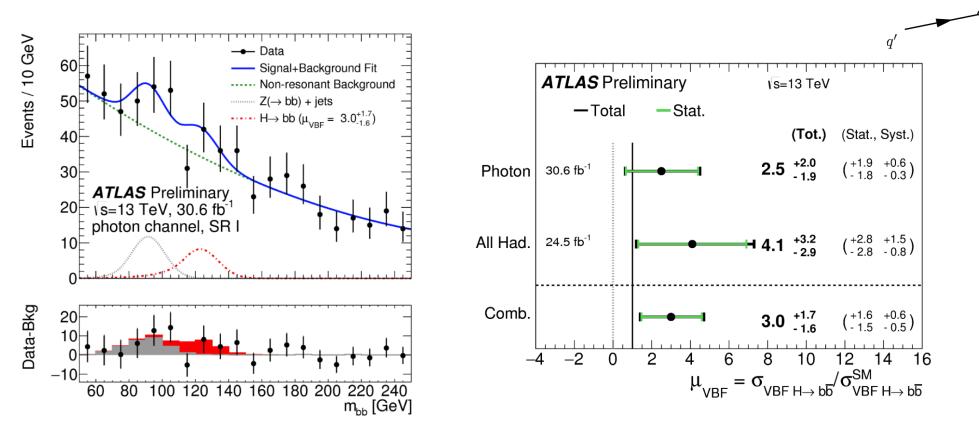
Conclusion


- VBF Higgs production has a unique event signature and have been intensively studied with MVA method.
- Results from the channels ($H \rightarrow ZZ^*, WW^*, \tau\tau, bb$) have been shown with 36.1,79.8 fb⁻¹ data:
 - The combined result achieves 6.5σ/5.3σ (observed/expected), which is the first observation of VBF Higgs from single experiment.
 - $H \rightarrow \gamma \gamma$ makes a leading contribution.
- With full Run2 data, the CPV for $H \rightarrow \gamma \gamma$ with have been investigated
 - No BSM observed.
 - Provide the best limits

backup slides

> ATLAS VBF $H \rightarrow ZZ^*$ is around 2.5xSM prediction which is still consistent with SM prediction considering the large statistical uncertainty

> Statistical uncertainty is the dominant one (can contribute 90% of total uncertainty).



 \succ For the VBF H $\rightarrow \tau \tau$, the observed signal strength is slightly higher than the SM prediction.

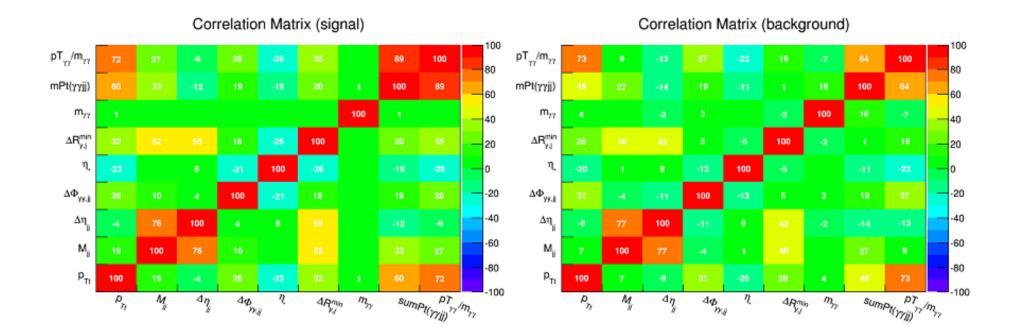
$VBFH \rightarrow bb$

- VBF $H \rightarrow bb$ analysis is divided into two categories (tagging or non-tagging photon)
- The tagging of one photon is efficient to suppress QCD background.

CERN-EP-2018-140

 \succ The observed signal strength for VBF H \rightarrow bb is ~3xSM, which is still consistent with SM within the error bar.

W


ATLAS VBF $H \rightarrow WW^*$

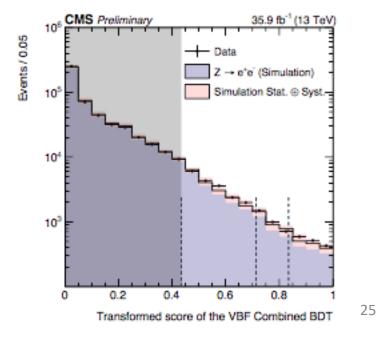
- 2.0		Source	$\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*} \ [\%]$	$\Delta \sigma_{\rm VBF} \cdot \mathcal{B}_{H \to WW^*} \ [\%]$
2.0 - 68% CL	ATLAS	Data statistics	10	46
2 - 95% CL		CR statistics	7	9
	\sqrt{s} =13 TeV, 36.1 fb ⁻¹	MC statistics	6	21
	1	Theoretical uncertainties	10	19
<u>}</u> [+ SM		ggF signal	5	13
1.0		VBF signal	<1	4
F		WW	6	12
0.5 -		Top-quark	5	5
0.5		Experimental uncertainties	8	9
		b-tagging	4	6
-		Modelling of pile-up	5	2
0.0		Jet	2	2
		Lepton	3	<1
-	-	Misidentified leptons	6	9
$-0.5 \begin{array}{c} -0.5 \\ -5 \end{array} \begin{array}{c} 0 \end{array} \begin{array}{c} -0.5 \\ -5 \end{array} $	·····	Luminosity	3	3
-5 0 5	10 15 20 25	TOTAL	18	57
	σ _{ggF} · ℬ _{H→WW} * [pb]			
Submitted to PLB		$= 1.10^{+0.10}_{-0.09} (\text{stat.})^{+0.13}_{-0.11}$	0.10	0.20
	$\mu_{ m VBF}$	$= 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}$	$(\text{theo syst.}) \pm 0.15$	$5(\exp \text{ syst.}) = 0.62^{+0}_{-0}$

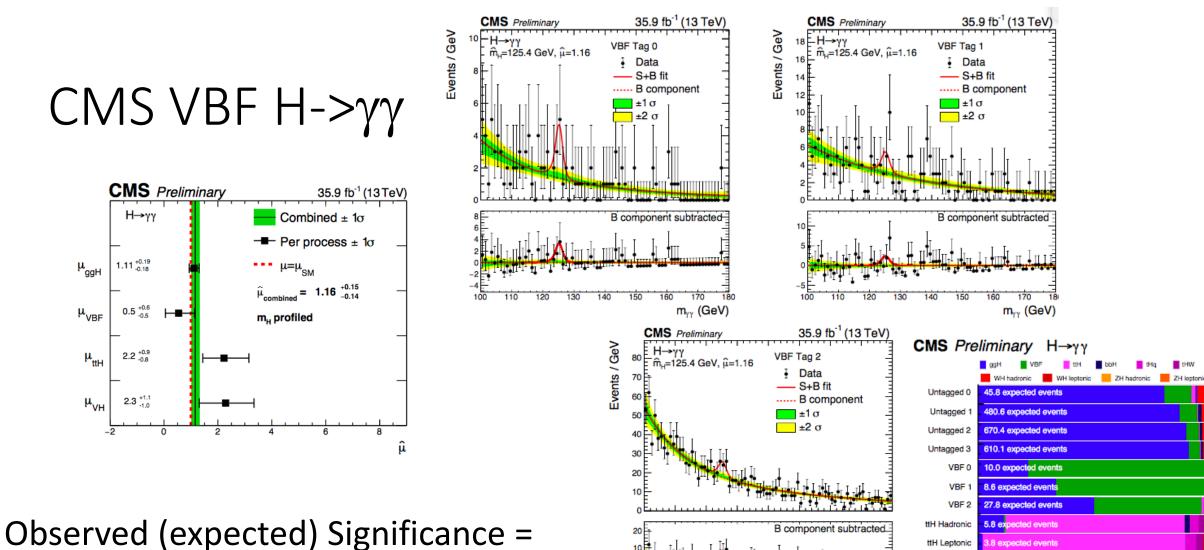
VBF is around 0.6xSM prediction which is still consistent with SM prediction considering the large statistical uncertainty.

correlation to $m_{\rm H}$

• the used variables should not be correlated to $m_{\nu\nu}$

CMS VBF H-> $\gamma\gamma$ strategy


Events produced via the VBF mechanism features two jets in the final state separated by a large rapidity gap. A multivariate discriminant is trained to tag the VBF jets kinematics, considering as background the production process of ggH + jets, and is given as input to an additional "combined" multivariate classifier along with the score of the photon identification MVA, the diphoton BDT score, and the ratio $p_{T\gamma\gamma}/m_{\gamma\gamma}$. Figure 7 (left) shows the transformed score of the combined multivariate classifier for data in the mass side-band region 105-115 GeV and 135-145 GeV, along with the predicted VBF and ggH distributions. The classifier score has been transformed such that the signal events from the VBF production mode has a uniform, flat, distribution. A validation of the score of the combined multivariate classifier obtained in $Z \rightarrow e^+e^- + jets$ events, where the electrons are reconstructed as photons and at least two jets satisfy the requirements listed below to enter the VBF category, is shown in Fig. 7 (right) for data and simulation.


Selections:

- one jet with p_T > 40 GeV and one with p_T > 30 GeV, both with |η| < 4.7 and width a tight requirement on the pileup jet identification;
- the invariant mass of the two jets m_{jj} > 250 GeV;
- the combined multivariate discriminant greater than 0.43.
- leading photon p_T > m_{γγ}/3, sub-leading photon p_T > m_{γγ}/4;
- photon ID BDT score greater than -0.2, in order to provide additional rejection against background events whose kinematics yield a high diphoton BDT score despite one reconstructed photon with a relatively low ID score;

- ➢ BDT training :
 - VBF Higgs vs ggH+jets
 - Divided into 3 cats.

➤Validated with Z->ee events

1.1σ/1.9σ

Signal Fraction (%)

ZH Leptonic

WH Leptonic

VH Hadronic

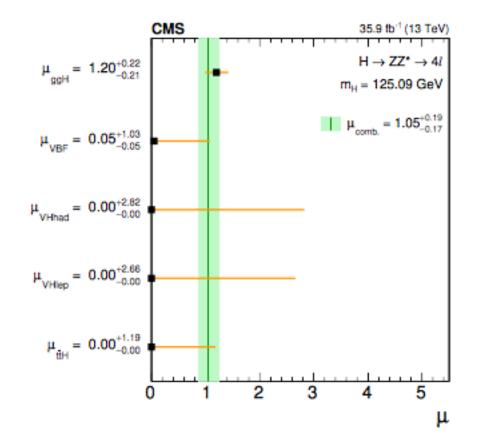
VH MET

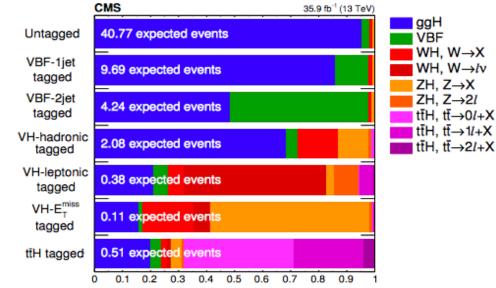
VH LeptonicLoose

m_{yy} (GeV)

0.5 expected events

6 expected events


2.8 expected events


9.7 expected events

4.2 expected eve 20 30 40 50 60 70 80 90

10

CMS VBF H->ZZ

signal fraction

	Event category							
	Untagged	VBF-1j	VBF-2j	VH-hadr.	VH-lept.	$ m VH$ - $E_{ m T}^{ m miss}$	$t\bar{t}H$	Inclusive
$q\overline{q} \to ZZ$	19.18	2.00	0.25	0.30	0.27	0.01	0.01	22.01
$\mathrm{gg} \to \mathrm{ZZ}$	1.67	0.31	0.05	0.02	0.04	0.01	< 0.0	2.09
$\mathbf{Z} + \mathbf{X}$	10.79	0.88	0.78	0.31	0.17	0.30	0.27	13.52
Sum of backgrounds	31.64	3.18	1.08	0.63	0.49	0.32	0.28	37.62
uncertainties	$^{+4.30}_{-3.42}$	$^{+0.37}_{-0.32}$	$^{+0.29}_{-0.21}$	$^{+0.13}_{-0.09}$	$^{+0.07}_{-0.07}$	$^{+0.14}_{-0.11}$	$^{+0.09}_{-0.07}$	$^{+5.1}_{-4.1}$
$\mathrm{gg} \to \mathrm{H}$	38.78	8.31	2.04	1.41	0.08	0.02	0.10	50.7
VBF	1.08	1.14	2.09	0.09	0.02	< 0.01	0.02	4.4
WH	0.43	0.14	0.05	0.30	0.21	0.03	0.02	1.18
\mathbf{ZH}	0.41	0.11	0.04	0.24	0.04	0.07	0.02	0.9
$t\bar{t}H$	0.08	< 0.01	0.02	0.03	0.02	< 0.01	0.35	0.5
Signal	40.77	9.69	4.24	2.08	0.38	0.11	0.51	57.79
uncertainties	$^{+3.69}_{-3.62}$	$^{+1.13}_{-1.17}$	$+0.55 \\ -0.55$	$^{+0.23}_{-0.23}$	$^{+0.03}_{-0.03}$	$^{+0.01}_{-0.02}$	$^{+0.06}_{-0.06}$	+4.89 -4.80
Total expected	72.41	12.88	5.32	2.71	0.86	0.43	0.79	95.4
uncertainties	$^{+7.35}_{-6.27}$	$^{+1.25}_{-1.21}$	$^{+0.78}_{-0.65}$	$^{+0.34}_{-0.28}$	$^{+0.10}_{-0.09}$	$^{+0.15}_{-0.12}$	$^{+0.14}_{-0.12}$	$^{+9.8}_{-8.3}$
Observed	73	13	4	2	1	1	0	94

Table 2. The numbers of expected background and signal events and the number of observed candidate events after the full selection, for each event category, for the mass range $118 < m_{4\ell} < 130 \text{ GeV}$. The yields are given for the different production modes. The signal and ZZ backgrounds yields are estimated from simulation, while the Z+X yield is estimated from data.