Status and First Results from LHCb

Paul Szczypka

École Polytechnique Fédérale De Lausanne

CHIPP August 23, 2010

Paul Szczypka (EPFL)

Status and First Results from LHCb

CHIPP August 23, 2010

Outline

The LHCb detector and Collaboration

- Design Goals
- Tracking
- Particle Identification
- Calorimetry
- Computing

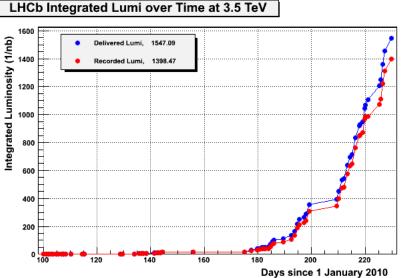
2 Physics Results

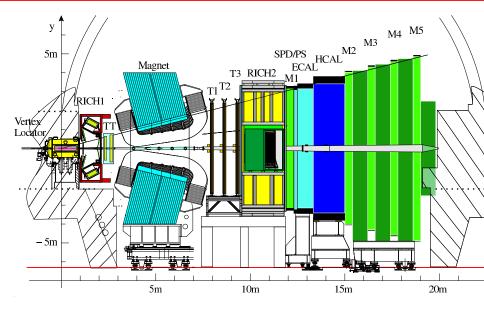
- Cross Sections
- K_S^0 Production
- $\Lambda/\overline{\Lambda}$
- 3 Physics Prospects with $1 fb^{-1}$

Summary

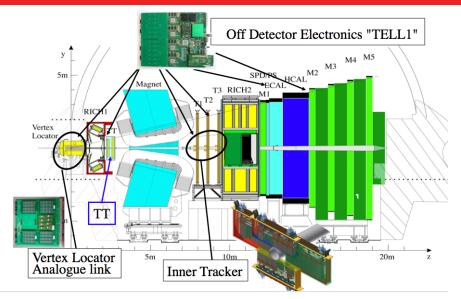
The LHCb Collaboration

- 730 members
- 54 institutes
- 15 countries


Swiss institutes involved are EPFL and Uni.ZH.

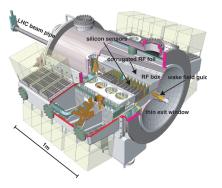

"The Large Hadron Collider beauty (LHCb) experiment is a forward one-arm spectrometer dedicated to the study of \mathcal{CP} violation and other rare phenomena in the decay of hadrons containing *b*-quarks at the LHC."

In order to perform this task, it must provide excellent:


- Track Reconstruction Efficiency
- Momentum Resolution
- Particle Identification
- Vertex Resolution
- Trigger Efficiency

The LHCb Detector

Swiss Responsibilities/Hardware Contribution in LHCb



Also perform comissioning, calibration, alignment and tracking.

Paul Szczypka (EPFL)

Status and First Results from LHCb

VErtex LOcator (VELO)

- Module and sensor alignment known to $< 5 \,\mu{\rm m}$
- VELO relative alignment better than 5 μm per fill
- Best hit resolution also $< 5 \, \mu m$

LHCb Preliminary

LHCb Preliminary

Projected angle 0-4 degrees

Projected angle 7-11 degrees

Binary Resolution

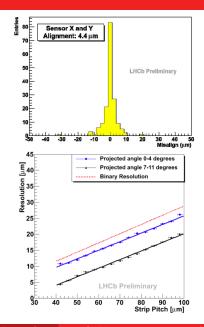
Misalion (um)

7 / 30

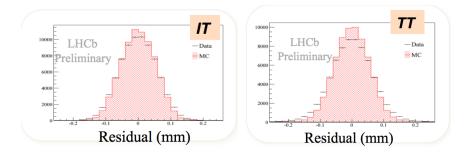
Sensor X and Y Alignment: 4.4 um


Resolution [µm] 35 30

20

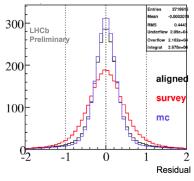

15 10

30


VErtex LOcator (VELO)

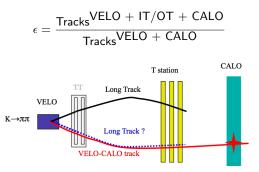
- Module and sensor alignment known to $<5\,\mu{\rm m}$
- VELO relative alignment better than 5 μm per fill
- Best hit resolution also $< 5 \, \mu m$

Silicon Tracker Alignment and Resolution

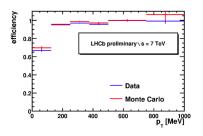

	Active Channels/%	Misalignment/ μ m	Hit Resolution/ μ m
IT	98.6	16	54
TT	99.6	35	55

Outer Tracker

- Straw tubes
- 70% Ar : 28.5% CO₂ : 1.5% O₂ drift gas.
- Space-drift time relation as expected

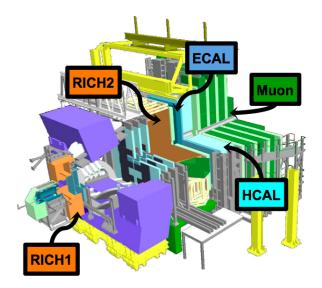


- 56 k channels
- 99.3% of channels are working
- OT resolution $\pm 270\,\mu{\rm m}$, \sim nominal



Tracking Efficiency

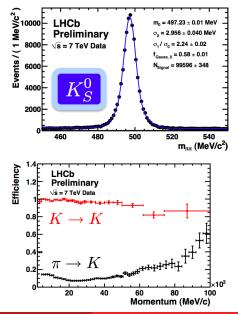
Using "Tag and Probe" method, efficiency defined as:



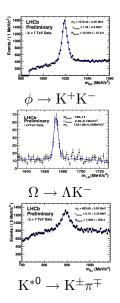
Method can also be used for ${\rm J}/\psi$ and Λ decays.

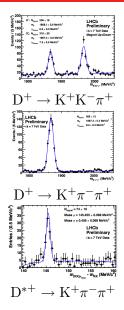
- Good agreement between data and MC.
- $\frac{\epsilon_{data}}{\epsilon_{MC}} = 0.99 \pm 0.02$ over all phase space.

Particle Identification: Subdetectors


Particle Identification: General Method

• Need pure samples of each particle type K^{\pm} , π^{\pm} , p, \overline{p} , μ^{\pm} , e^{\pm} identified without the use of any PID at all


• V0:

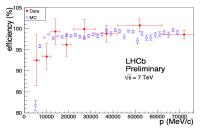

- $K_S^0 \rightarrow \pi^+ \pi^-$
- $\Lambda \to p\pi^-$
- Kinematic cuts only
- Resonances (one daughter identified with PID):
 - $\phi \rightarrow \mathrm{K}^+\mathrm{K}^-$

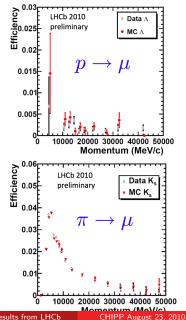
•
$$J/\psi \to \mu^- \mu^+$$

RICH Particle Zoo: Building Blocks of Future Analyses

Muon PID

• Good agreement with MC.

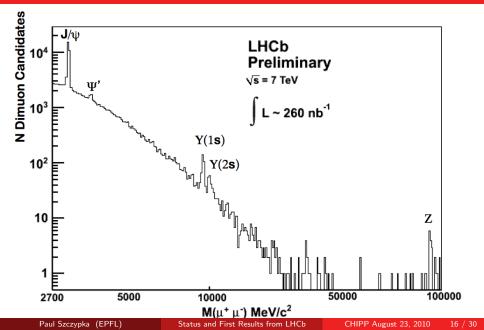

 Integrated efficiency over full spectrum,


 $\epsilon(\mu) = 97.3 \pm 1.2\%$

•
$$\epsilon(p \to \mu) = 0.21 \pm 0.05\%$$

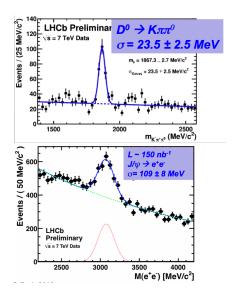
•
$$\epsilon(\pi \to \mu) = 2.35 \pm 0.04\%$$

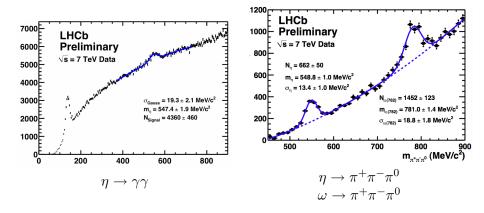
•
$$\epsilon(K \to \mu) = 1.67 \pm 0.06\%$$



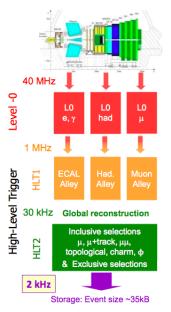
Paul Szczypka (EPFL)

Status and First Results from LHCb


Particle Zoo: Dimuon Spectrum


Calorimeter PID (e and π^0)

- ECAL calibrated to 2% level
- Reconstruction of D from neutrals
- Clear $J/\psi \rightarrow e^-e^+$ (including Bremsstrahlung recovery).



Calorimeter PID: Reconstructed Neutral States

Trigger

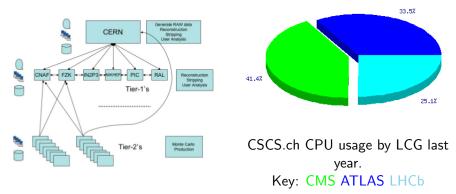
LHCb trigger

Trigger is crucial:

- > $\sigma_{b\bar{b}}$ is less than 1% of total inelastic cross section
- B decays of interest typically have BR < 10⁻⁵

Customized Hardware Level Trigger (L0)

➤ random trigger


> high-p_t μ , e, γ and hadron candidates

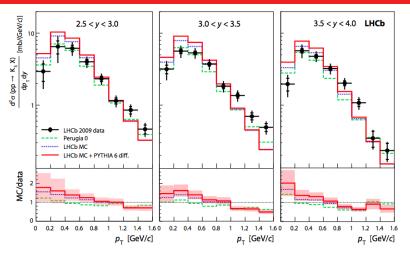
Software High Level Trigger (HLT1&HLT2) Farm with O(2000) multi-core processors HLT1:

- > minimum bias: no bias & micro bias (at least one track)
- > c & b physics: L0 confirmation with more complete info, add impact parameter and lifetime cuts

<u>HLT2</u>:

> inclusive and exclusive selections

- Grid-based analysis, storage and MC production.
- Data reprocessed (stripped) several times a year, 9 times so far in 2010.
- Swiss Tier 2 site, CSCS.ch, well-used in the last year, in line with fairshare policy.

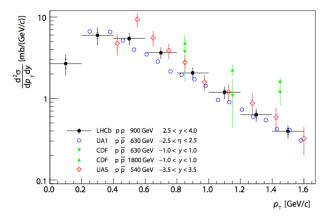

Prompt $K_{ m S}^0$ production in pp collisions at $\sqrt{s}=0.9~{ m TeV}$

The LHCb Collaboration¹

Abstract

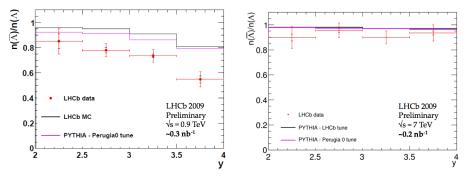
The production of $K_{\rm S}^0$ mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be $6.8 \pm 1.0 \ \mu {\rm b}^{-1}$. The differential prompt $K_{\rm S}^0$ production cross-section is measured as a function of the $K_{\rm S}^0$ transverse momentum and rapidity in the region $0 < p_{\rm T} < 1.6 \ {\rm GeV}/c$ and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.

Prompt K_S⁰ Production: (http://arxiv.org/abs/1008.3105)



- Prompt ${
 m K}_{
 m S}^0$ produced in the LHCb pilot run at $\sqrt{s}=900\,{
 m GeV}$
- Reasonable agreement with MC, but MC not tuned on data.
- First input from LHCb for tuning MC.

Paul Szczypka (EPFL)

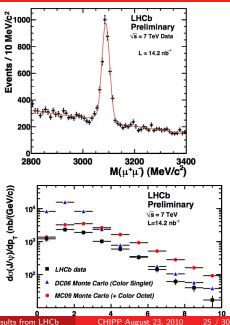

Status and First Results from LHCb

Prompt K_S⁰ Production: (http://arxiv.org/abs/1008.3105)

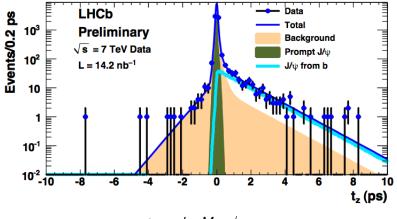
- Unique measurement at high rapidity and low p_T at $\sqrt{s} = 0.9 \text{ TeV}$
- Novel method of measuring luminosity by measuring the beam profile with the beam-gas and beam-beam interactions.

$\Lambda/\ \overline{\Lambda}$ ratio

- Unique measurement at high rapidity in ${\rm p}~{\rm p}$ collisions at $\sqrt{s}=$ 0.9 TeV and 7 TeV.
- $\Lambda/\overline{\Lambda}$ ratio differs from expected values at 0.9 TeV
- Important input for understanding the hadronization modes.
- p/\overline{p} is also being studied.


b Cross Section Measurement using inclusive $J/\psi \rightarrow \mu\mu$

Interesting because heavy quarkionia production mechanism not completely understood.

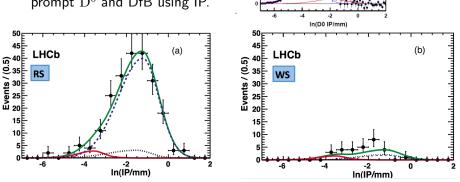

- $J/\psi \rightarrow \mu^- \mu^+$ selected.
- J/ ψ yield calculated from mass fit, 15 MeV/ c^2 resolution.

$$\sigma = rac{N\left(\mathrm{J}/\psi
ightarrow \mu^- \mu^+
ight)}{\mathcal{L} \cdot \epsilon \cdot \mathcal{B}\left(\mathrm{J}/\psi
ightarrow \mu^- \mu^+
ight)}$$

- Differential cross section calculated in bins of p_T assuming non-polarised J/ψ.
- σ (J/ ψ from b) in acceptance: 7.65 \pm 0.19 \pm 1.10^{+0.87}_{-1.27} μ b

b Cross Section Measurement using inclusive $J/\psi \rightarrow \mu\mu$

$$t_z = d_z \cdot M_{{
m J}/\psi}/p_z$$


- \bullet Prompt and $b \to J/\psi$ contributions from fit to propertime distribution.
- Bkg calculated from mass sidebands.

Paul Szczypka (EPFL)

Status and First Results from LHCb

b Cross Section Measurement from $B^0 \rightarrow D^0 \mu \overline{\nu}_{\mu} X$

- $D^0 \rightarrow K^- \pi^+$ selected.
- Combination with μ reduces prompt D^0 bkg.
- Statistical separation of prompt D^0 and DfB using IP.

Events/ (0.1) 800

600

400

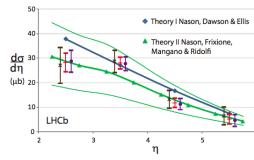
200

LHCb

Preliminary

√s = 7 TeV Data

DfB


¹⁰⁰⁰ Prompt

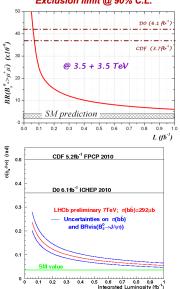
b Cross Section Measurement from $B^0 \rightarrow D^0 \mu \overline{\nu}_{\mu} X$

• Yields of DfB are calculated, knowing $\mathcal{B}(b \to D^0 X \mu^- \overline{\nu})$ and efficiencies,

 $\sigma \left(pp \rightarrow b\overline{b}X \right)$ is calculated.

- Main systematic errors from Luminosity, Tracking efficiency and b-Branching Ratios:
 - 10% from *L*, beam-current dominated.
 - 8% (J/ψ), 10% (dimuon) tracking efficiency determined by comparing to MC.
 - 9% (J/ψ), 5% (dimuon) b Branching Ratio.

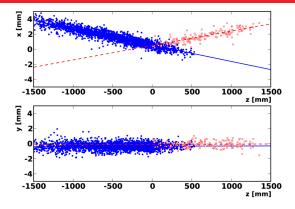
Channel	$\sigma \left(\mathrm{pp} \to \mathrm{b} \overline{\mathrm{b}} X \right) / \mu \mathrm{b}$
$J/\psi \rightarrow \mu\mu$	$319\pm24\pm59$
$\mathbf{D}^{0}\mu^{-}\overline{\nu}_{\mu}X$	$282\pm20\pm49$
Combined	$292\pm15\pm43$
$ \left \mathbf{D}^{*-} \mu^{-} \overline{\nu}_{\mu} X \rightarrow \right $	$275\pm44\pm66$


Physics Prospects with $1 fb^{-1}$

 $B^0_{\circ} \rightarrow \mu\mu$:

- Rare decay, $\mathcal{B} \sim \mathcal{O}(10^{-9})$.
- $0.1 \, fb^{-1}$ improve on Tevatron limit.
- $1 fb^{-1}$ exclude \mathcal{B} down to $7 \cdot 10^{-9}$ or observe 5σ signal with $\mathcal{B} = 3.5 \cdot SM$

 $B_s^0 \rightarrow J/\psi \phi$:


- $\phi_s = -2\beta_s$, SM value small & precise.
- 50 k events/ fb^{-1} consistent with observed data.
- Sensitivity better than Tevatron with $0.1 fb^{-1}$.

Exclusion limit @ 90% C.L.

- Detector understood and performing well.
- Charm resonances and B-mesons have been reconstructed.
- The foundations of the LHCb physics program have been firmly established.
- Unique measurements of production cross sections at $\sqrt{s} = 7 \,\mathrm{TeV}$
- LHCb is in good form to analyse the 1 fb⁻¹ expected in 2011.

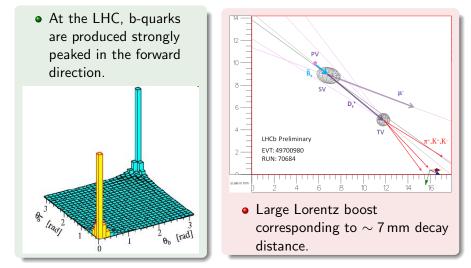
Luminosity Measurement

- n_i = number of protons,
- $f = 11.245 \,\mathrm{kHz},$
- θ is half-crossing angle,

ho is bunch density,

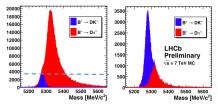
number of \boldsymbol{p} from LHC machine.

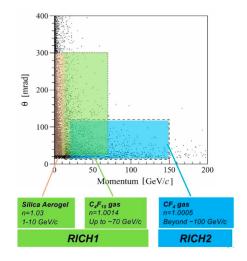
Bunch shapes


well-described by gaussian.

$$L = 2cn_1n_2f\cos^2\theta \int \rho_1\left(x, y, z, t\right)\rho_2\left(x, y, z, t\right)dx\,dy\,dz\,dt$$

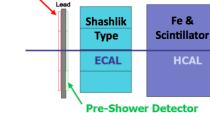
Beam-gas tracks reconstructed in VELO, beam directions and crossing angle determined from beam-gas vertex distribution.

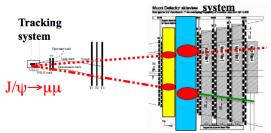

Paul Szczypka (EPFL)


Physics Environment

Particle Identification: RICHes

- Need good $\pi/K/p$ separation in momentum range between 1 and 100 GeV and good coverage of angular acceptance.
- Two RICH detectors and three radiators.




Particle Identification: Calorimeters and Muon

• Calorimeters:

- Provides PID for e, γ
 & neutral particles.
- Position and energy information.
- Electron/Pion separation.
- Muon:
 - Provides µ ID with high purity
 - Multi-wire Proportional Chambers
 - Gas Electron Multipliers

Muon

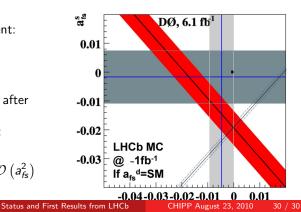
Scintillator Pad Detector (SPD)

Flavour-specific Asymmetry (A_{fs})

D0 measures like-sign dimuon asym

$$N^{++} = N (b\overline{b} \to Xl^+ l^+)$$

$$A^b = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = (0.494)a^s_{fs} + (0.506)a^d_{fs}$$


$$A^b = [-9.57 \pm 2.51 \pm 1.46] \cdot 10^{-3} \approx (-1 \pm 0.3)\%$$

Orthogonal LHCb measurement:

$$\Delta A_{fs}^{s,d} = \frac{a_{fs}^s - a_{fs}^d}{2}$$

Resolution comparable to D0 after 100 pb^{-1} Also via untagged $B^0_s \to D_s \pi$:

$$A_{\rm fs}^{\rm s} = \frac{a_{\rm fs}^{\rm s}}{2} \frac{\cos \Delta m_{\rm s} t}{\cosh \Delta \Gamma_{\rm s} t/2} + \mathcal{O}\left(a_{\rm fs}^2\right)$$

