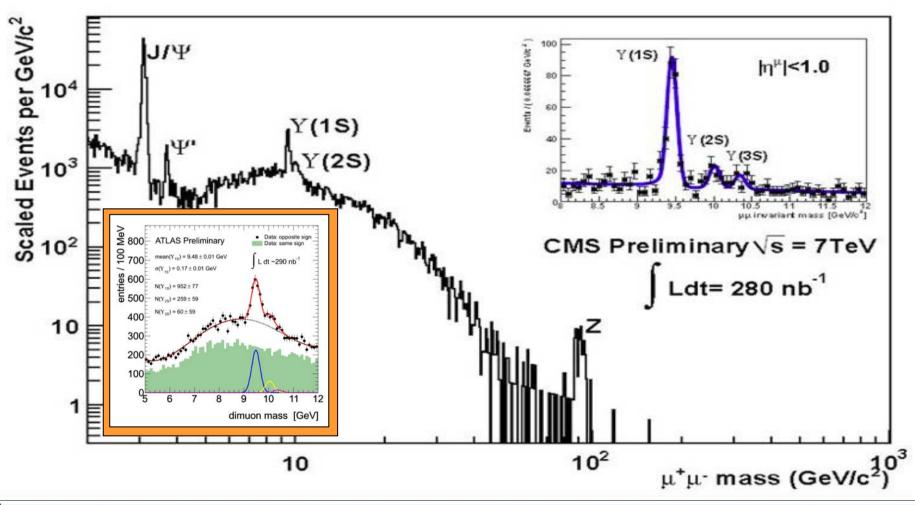


Report from the CHIPP Computing Board

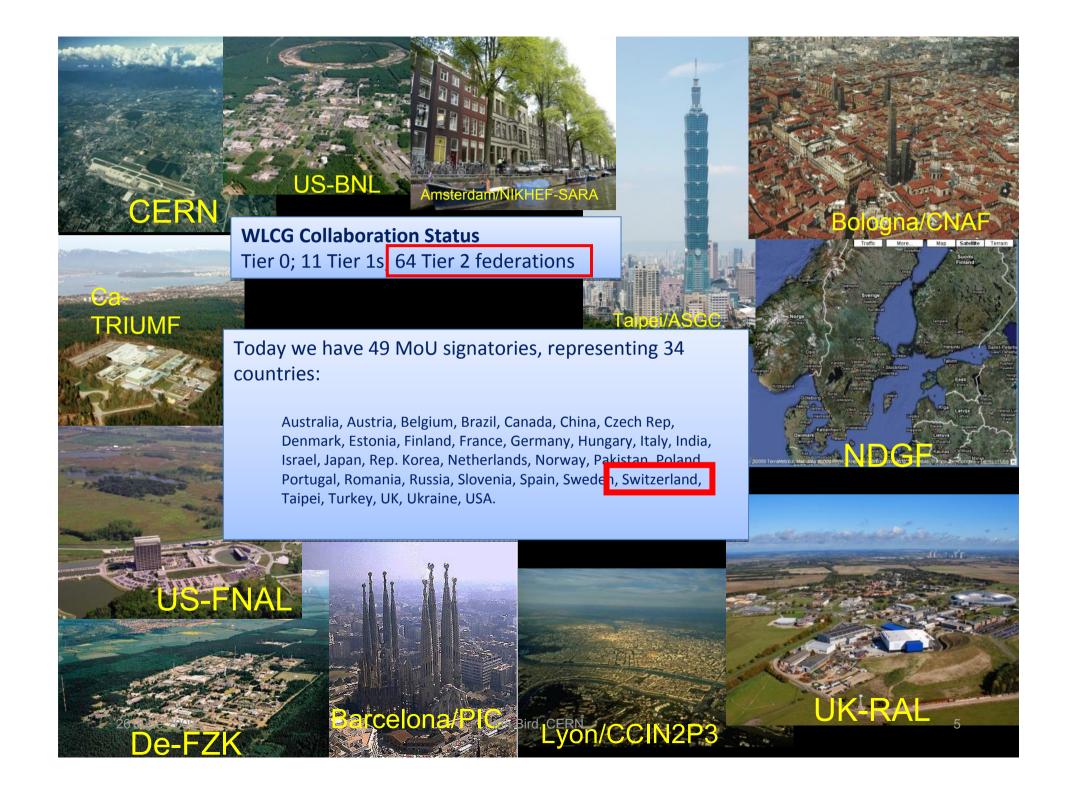
Christoph Grab

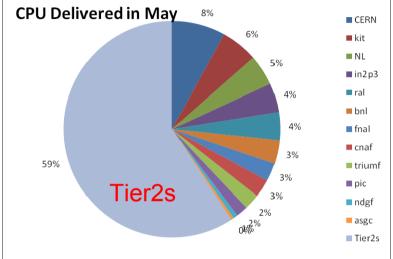
Issues

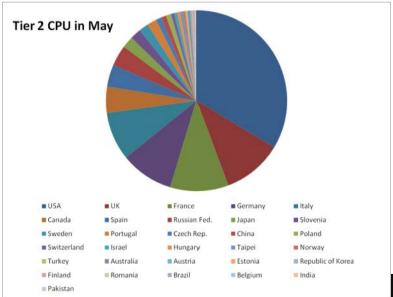

- 1. Some general comments on Grid Operations
- Status Swiss Computing infrastructure for HEP analysis
 → tier-2 and tier-3s
- 3. Relation CHIPP to Swiss NGI to European EGI

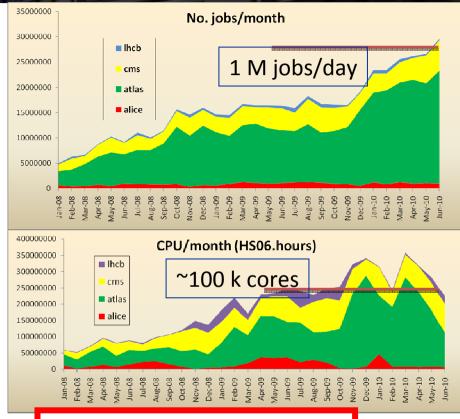
Comments on global Grid

The LHC computing grid "works successfully"


> proof is the physics output by all 4 experiments


Today >140 sites ~150k CPU cores 2000 km >50 PB disk 1000 mi

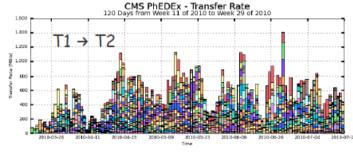


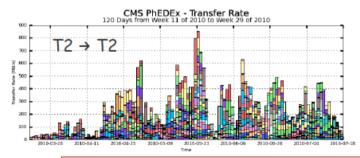

(slides borrowed from I.Bird at ICHEP2010 see his talk for more information)

USE OF CPU

- Peaks of 1M jobs/day now
- Use ~100k cores equivalent
- Tier 2s heavily used wrt Tier 1s

Data distribution for analysis


Data Distribution for Analysis


Data transferred from Tier-1's

- · 49 Tier-2 sites received data
- > 5 PB transferred in last 120 days
- average rate 562 MB/s
- max rate 1407 MB/s
- Data transferred between Tier-2's
 - · 41 Tier-2 sites received data
 - > 2.5 PB transferred in last 120 days
 - average rate 254 MB/s
 - max rate 853 MB /s
 - · full mesh approach
 - Data distribution re-balances itself
 - Datasets produced at Tier-2's can be distributed to others

Markus Klute, MIT

ICHEP - July 2010

T2_UK_London_K

T2_FR_GRIF_IRFU
T2_BN_SPNACE
T2_RU_ITEP

TZ PK NCP

For all experiments: early data has been available for analysis within hours of data taking

CMS

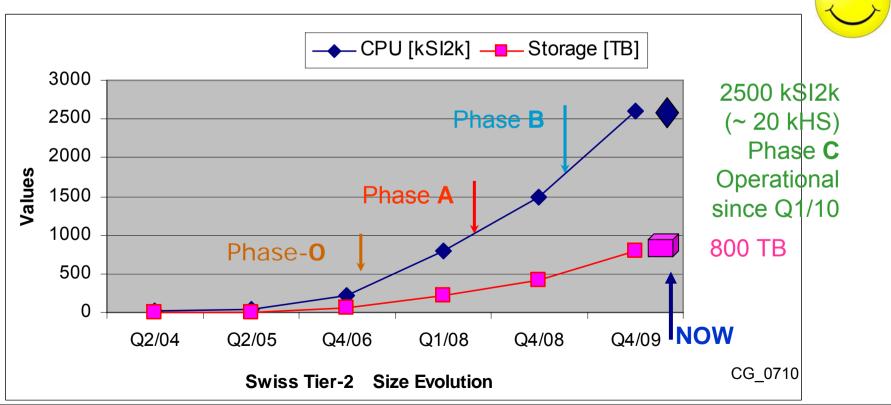
Status of the Swiss Tier-2 Regional Centre

Phase C of Hardware Upgrade Completed

Cluster has been setup up in phases :

Since 2009

- → has reached in Q1/2010 the "originally planned LHC startup size
- → Technology choice so far: SUN blade centres + multicore CPUs
 - → Swiss tier-2 is in routine operation ②
- Implementations in Q4/09-Q1/10
 - added a higher bandwidth backbone on Infiniband technology
 - → replaced local disk scratch system by a global Lustre system
 - upgraded/added storage elements (Thors" with ZFS on disk)
 - → upgraded worker nodes (CPU) → faster, lower power, higher-density
 → and turned old nodes to ATLAS Switzerland for re-use in tier3s
 - + maintain operation in parallel to upgrade with minimal interruption!
- total resources after upgrade reaches "original design":
 - → WN: 768 cores a 3.7 k ~ 2500 kSI2k
 - → Storage: total of ~ 800 TB disk; no tapes
 - Service nodes, VO-boxes, etc unchanged.



Swiss Tier-2: Cluster Evolution

Growth corresponds to Swiss commitment in terms of compute resources supplied to the expt's according to the signed MoU with WLCG.

Reached the phase C ("LHC Startup Size") – operational since Q1/2010

→ total of ~2500 kSl2k (768 cores); total ~800 TB storage

Swiss Tier-2: Facts and Figures (2)

Operational Manpower at Tier-2:

- → Operation at CSCS: ~ sums to 2.5 FTEs (IT experts, spread over 5 persons) (1.5 FTE by CSCS; 1 FTE by CHIPP since Q2/2010)
- → support of experiment specifics by scientists of experiments via one dedicated contact person per experiment (by CHIPP PostDocs)
 - → in total an additional ~1.5 FTE → total for tier-2: ~ 4 FTE

Support - strategy at CSCS:

- → CHIPP cluster is integrated in new "Co-location Services";
- → CSCS is committed to continue support for CHIPP and CH-Tier-2 (as in MoU)

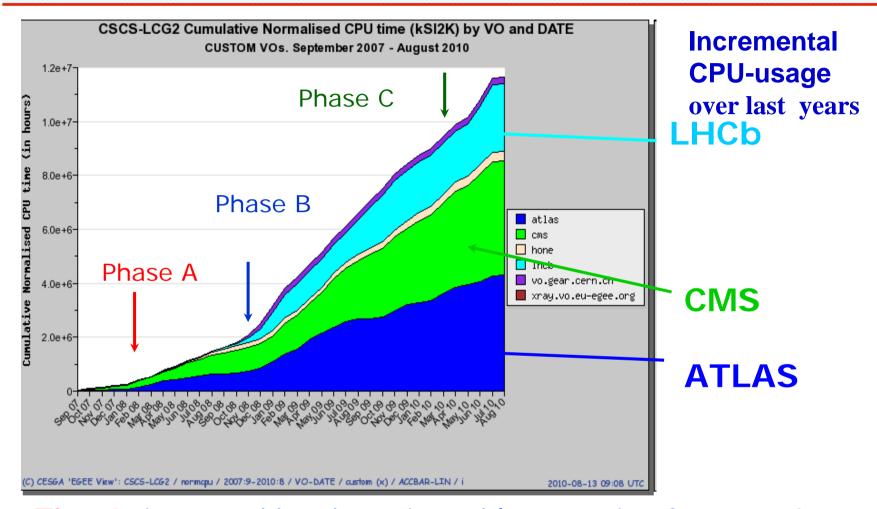
Financing (HW and service) :

- → Financing of hardware mostly through SNF/FORCE (>95%), with some contributions by Universities + ETH + PSI
- → Infrastructure and operations provided by CSCS i.e. ETHZ (additional costs once at USI for infrastructure)

Swiss Tier-2: Planning

Note: present figures are still based on experiments numbers, estimated in the pre-data-taking era. → experiments announced increased requirements ...!

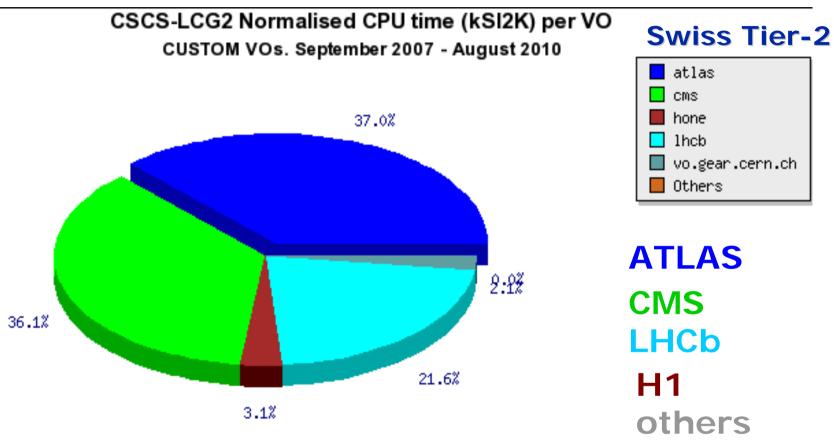
- Plans for 2010-2012 :
 - main goal is stability+reliability+availability; rolling replacements and "whatever additions required" to react to expt's needs
 - also ONE FTE person to support Tier-2
- CSCS will move location to new campus at USI (Lugano);
 foreseen in ~2012; also LHC shutdown in 2012...
- Question: what about our cluster?
 - ▶ Option 1: keep cluster running at Manno, setup new one in parallel at USI → no interruption in operation; clean solution.
 - Option 2: move cluster : dismantle / transport /setup again.
 interruption of operation for months ???
 - => Evaluations of costs in progress; option 1 preferred. Feedback welcome!


Some Performance Plots of Tier-2 Operations

Christoph Grab, ETH 15

Swiss Tier-2 usage

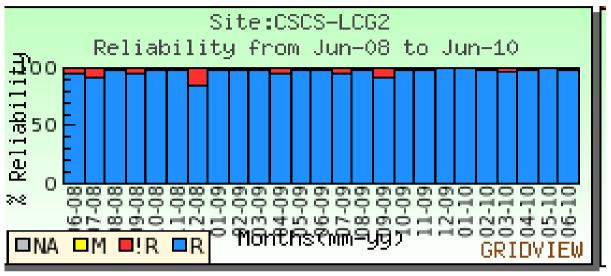
(9/07-8/10)



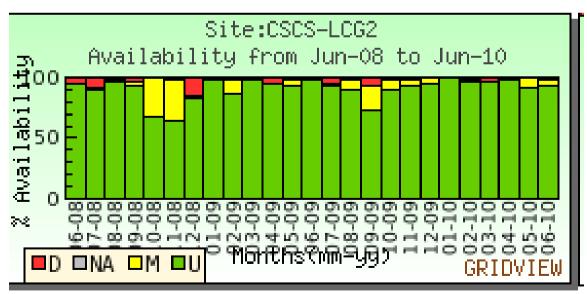
- Tier-2 is up and has been in stable operation for years!
 continuous contributions of resources to experiments.
- Spare cycles given to other VO (eg. H1, theory (CERN) ...)

16

Shares of normalised CPU per VO (9/07-8/10)


Shares between VOs overall pretty well balanced

Swiss Tier-2 availability (6/09-7/10)


CSCS-LCG site reliability
 for last 2 years 06/08 – 07/10

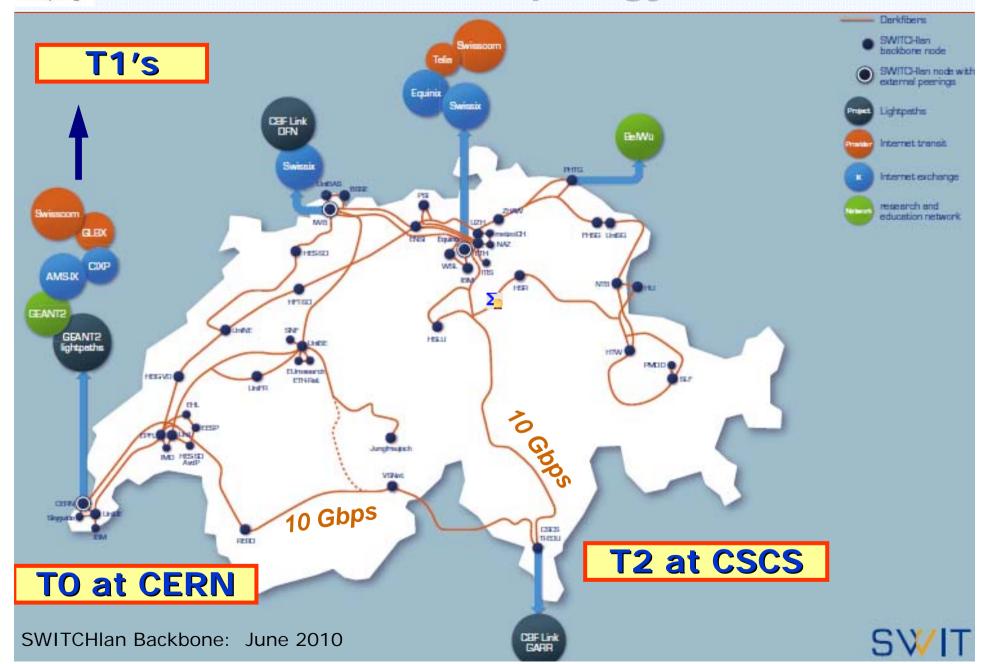
CSCS-LCG Site availability
 for last 2 years
 06/08 – 07/10

D: down
M: maintenanc

U: up

Network

Christoph Grab, ETH 19


Swiss Tier-2: Network

No changes since 2009

- Network traffic:
 - → routing via SWITCH: two redundant lines >10Gbps to CERN and Europe
 - → transfer rates reached up to 10 TB / day from FZK (and CERN)
 - → Presently still sufficient bandwidths ...
- Provisions are there to increase bandwidths if needed within months

Swiss Network Topology (6/10)

Status of the Swiss Tier-3 Centres

Christoph Grab, ETH 22

Swiss Tier-3 Efforts

Large progress seen over last year for all 3 experiments.
 upgrades in progress nearly everywhere!

- Close national collaboration between Tiers:
 - > Tier-3 contacts are ALSO experiment's site contacts for CH Tier-2.

→ATLAS: operates the Swiss ATLAS Grid → federation of clusters at

- Bern uses local HEP + shares university resources
- Geneva operates local cluster

- **→CMS**: ETHZ + PSI+ UZH run a combined Tier-3
 - located at and operated by PSI IT

→LHCb:

- > EPFL : operates huge local cluster → is DIRAC site
- UZH uses local HEP + plans to share university resources

Swiss Tier-3 Resources (for reference)

Site (#users)	Nr cores	CPU (kSl2k)	Storage (TB)	Comments (8/10)
ATLAS BE (12) GE (~55)	200+300sh 268	~600 462	100 177	BE: standing Atlas production; GE: identical SW-environment to CERN; direct line to CERN.
CMS ETHZ, PSI, UZH (21)	224	~1200	270	GRID SE + UI :direct GRID access.
LHCb EPFL (40) UZH (6)	480 48+sh	~2200 ~400	75 20	EPFL is DIRAC site; test, debug jobs. UZH: most jobs on grid
Total Tier-3		~5000	640	cf: Tier-2: 2500 kSl2k (est), 800 TB

- Tier-3 capacities : similar (>=) size in CPU as Tier-2
- Note: CPU numbers are estimates with large uncertainties !!!
- conversion factors: 1 kSl2k ≈ 4-7 HS06 ≈ 5 Cint06; (rough approximations !!)

Swiss NGI – EGI and CHIPP relations

Christoph Grab, ETH 26

Roles of EGI, NGI, Swing, CHIPP (ref)

 Up to 1.4.2010 the overall "operation, R&D etc." for the GRID was done by EGEE (Enabling Grid for E-sciencE)

- In 2010,EGEE-III was succeeded by EGI, the "European Grid Initiative",
 - → "EGI provides a more sustainable way to centrally coordinate, evolves and operates the current European grid infrastructure" to guarantee its long-term availability for performing research and innovation..."
 - → EGI depends on and is supported by the NGI (National Grid Initiatives), set up per country to manage the national grids
 - → Status: MoU signed by SWITCH (participate in FP7 project InSPIRE-EGI)
- Switzerland's official NGI is SWITCH (is LI ad interim till 12.2011) Swin
 - → SWING (Swiss National Grid Initiative) is destined to assume this rol

- Swiss NGI is obliged to provide services for community :
 - → CHIPP/CSCS has to provide its share (essentially the same as now, Serving Swiss Universities) as provided now to WLCG (through EGEE): support, operations etc.
 - compensating resources expected from SER and EGI

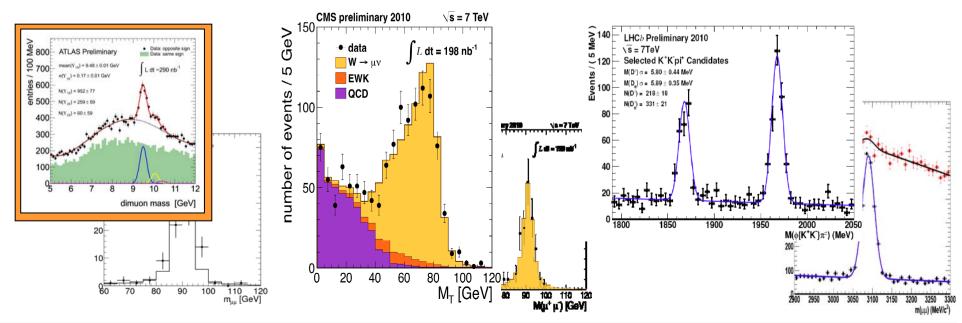
For reference only

EGI - NGI - CHIPP

Collaborations in/with EU initiatives :

- → Operation of European GRID services : transition EGEE-III → EGI.eu
- → NGI represent countries in EGI.eu
- Switzerland is represented by ONE leading institution
 - SWITCH agreed to act as leading institution;
 - → SWITCH coordinates the Swiss contributions to EGI.eu
 - after 31.12.2011 SWiNG will become the official SWISS NGI

• Main user base in Switzerland:


- → Dominated by particle physics → CHIPP
- → CHIPP represented by ETHZ (through chair of CCB, a.p. C.Grab)
- → Theor. chemistry represented by UZH (through CCC chair K.Baldridge)
- → other communities directly through SWITCH/ETHZ/UZH
- Collaborations have been put on solid grounds with official, legal agreement documents between : EGI - NGI(SWITCH) – CHIPP(ETH)

Summary

- •Swiss tier-2 reliably operates and delivers the Swiss pledges to the LHC experiments in terms of computing resources since Q2/2005
 - → Reached the originally planned "LHC-startup size" in Q1/2010
 - → Tier-3 centres strongly complement Tier-2

We are contributing to the PHYSICS!

Thanks - CCB + T2/3 Personnel

C.Grab (ETHZ) [chair CCB]

D.Feichtinger (PSI) L.Sala (ETHZ)

M.Goulette, S.Gadomski, (UNI Ge)

S.Haug (UNI Bern)

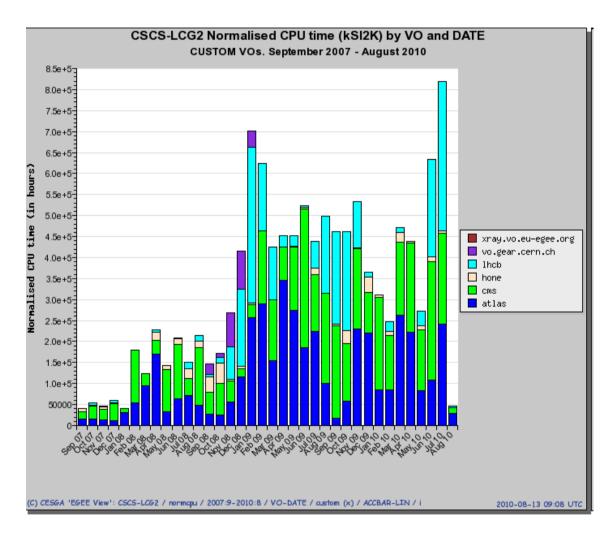
R.Bernet (UNIZH) Y.Amhis (EPFL)

P.Fernandez, P.Oettl, F. Georgatos [CSCS]

and many more ...

Swiss LHC Tier-2 cluster "PHOENIX"

System Phase B operational since Nov 2008 System Phase C operational since Mar 2010



CPUs: 768 cores ~2500 SI2K X6275 blades, twin node configuration 2x (2x E5540 @ 2.53GHz, 24GB RAM)

- **❖** Storage : ~ 800 TB
 - 27 X4500 thumpers
 - 10 X4540 "thors"

Swiss Tier-2 usage (9/07-8/10)

Normalised CPU time per month

ATLAS CMS LHCb others

Shares between VOs varies over time (production, challenges...)

EPFL: Tier 3 Status

Hardware and Software

- Intel Xeon Cluster, 64-bit, SL4 (Beryllium)
 - 58 worker- and 2 interactive-nodes with 2 × quad-core (2.5 GHz)
 - 3.6 + 53.8 + 17.5 Tb of storage in RAID6/5/0 configuration
- Machines identical to those in the LHCb pit
- Uses SLC4 & SLC5 binaries of LHCb software
- Storage managed by one node need more

Current Status and Operation

- Migrating to SLC5
- Used mainly for user analysis and MC generation
- Some extra hardware required for heavy analysis
- GRID better for analysis but not all users have certificate

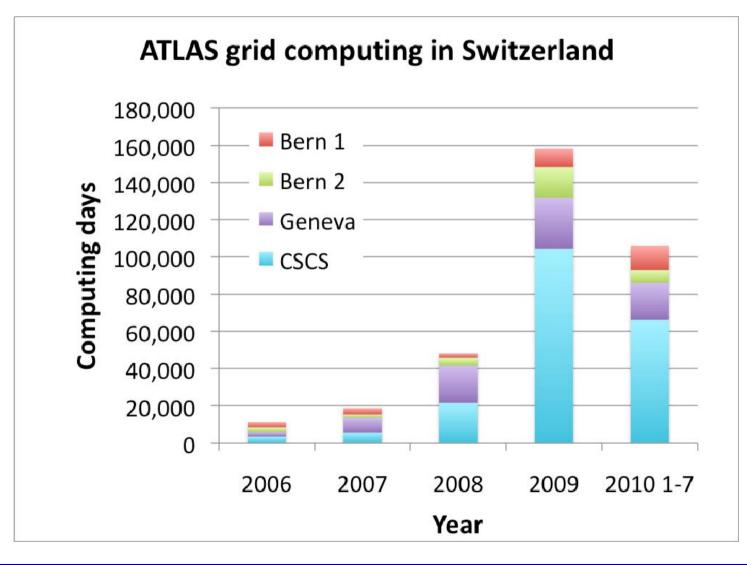
Tier-3 Status - Zurich

Zurich HEP Cluster:

New Intel Cluster, 64-bit, SLC5

Local LHCb Software Installation

Future: DIRAC installation, LHCb Dirac Site


Hardware: CPU: ~500 HS06, Disk: ~20 TB

Usage: Mainly code development and test jobs.

Most jobs are still going to the Grid.

Swiss contribution to ATLAS computing

some 0.8% of ATLAS computing in 2009/10