Medical Applications

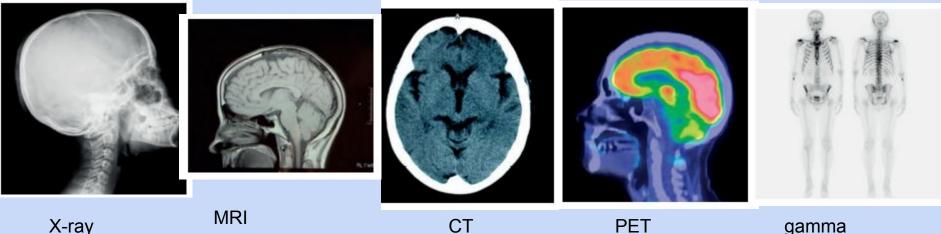
of Particle Physics

HST2022 GROUP 3:

Alisher Arstanbek,

Funda Kaçan,

Janine Nauw,


Koko Dove

1) Curriculum and Classroom Connections

- Radiation (all)
- Medical imaging & therapy (the Netherlands)
- Electric and magnetic fields (all)
- Particle accelerators as an application (the Netherlands)

Echo

X-ray

1) Curriculum and Classroom Connections

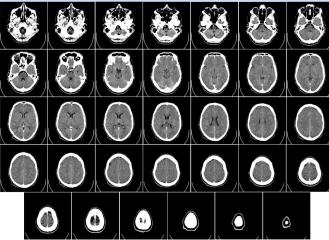
The part of the application of particle physics 'Applications of Modern Physics on Technology', 'X-rays and LASERs', 'Scientific Research Centers'

Some of students' objectives of that part ;

- Explain the effects of X-rays on organisms
- Explain the production process of X-rays
- Give examples to the usage of LASERs in technology
- Research and present the aim of scientific researches made in national and international SRCs like TÜBİTAK (national one), CERN and NASA
- Discuss the possible effects of studies, done in SRCs, on science and technology
- Explain which medical imaging would be best for certain patients

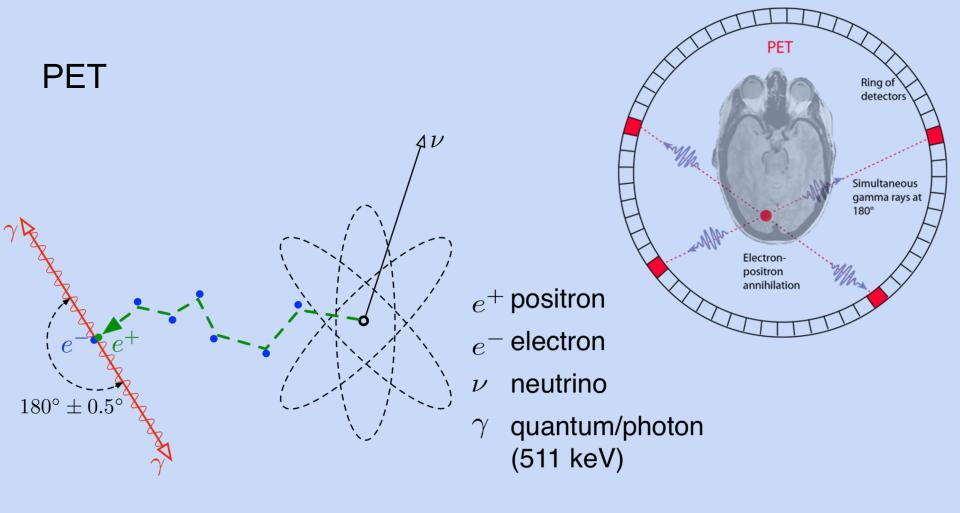
2) Key Ideas

Imaging	Therapy
Detectors	Accelerators
 X-ray (and contrast fluid) Nuclear diagnostics Magnetic Resonance Imaging (MRI) Computed tomography (CT) Positron emission tomography (PET) Single-photon emission computed tomography (SPECT) Echo 	 Radiation therapy X-ray tube Particle therapy
	Glass X-F Envelope O


node fitted ith fins to sipate heat

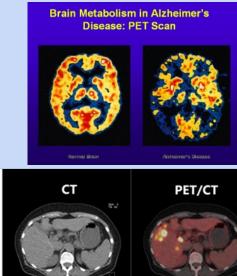
2) Key Ideas - Why does it matter?

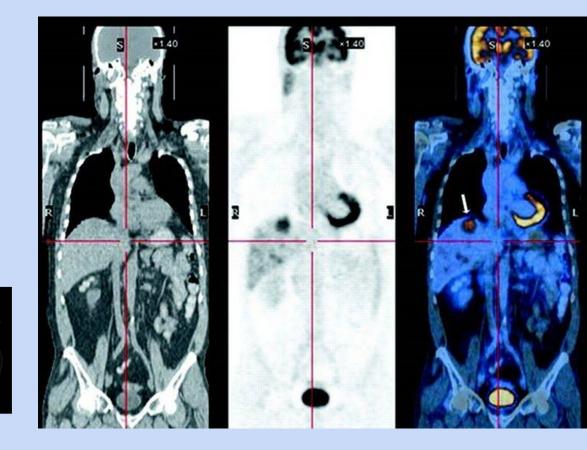
- Medical applications represent the largest use of particle physics!
- Students need to know why it is important inspiration and career choices (girls!)
- Advances in scientific technology early detection, targeted treatment
- Connections to biology cancer, effect of radiation on organic matter.



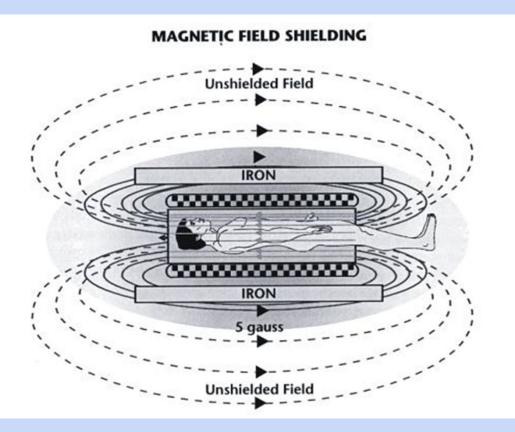
2) Key Ideas - Important Aspects for Teaching

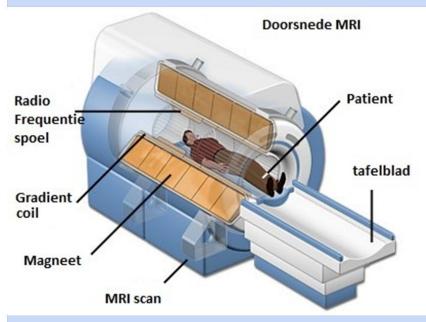
- Types of radiation and their penetration depths
- Medical imaging techniques
- Therapies
- How each technology works
- Rationale for use

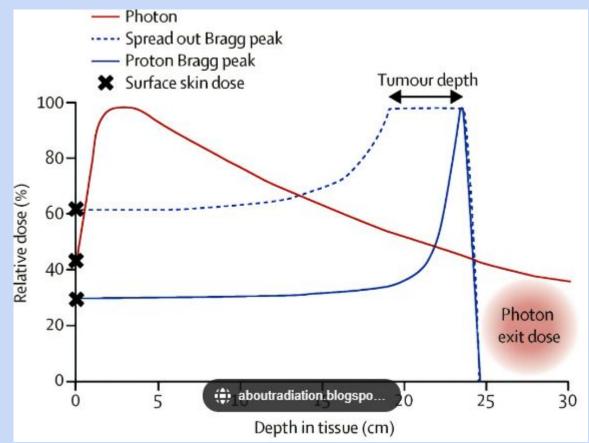



PET & CT

PET - body functions


CT - anatomy


PET



X-ray/gamma vs. Proton therapy

3) Potential Students' Conceptions and Challenges

- Radiation is dangerous and something to be afraid of
- Protons and neutrons are the smallest known particles
- Difficulty distinguishing between uses of EMR of different wavelengths
- Difficulty distinguishing between the use of particles themselves
- Misunderstanding about ways cancer is treated
- Incomplete understanding about how imaging works
- Electrons are particles
- Photons are waves

4) Helpful Materials and Resources

cern.ch/PER

Natuurkunde Overal (Robert Bouwens, Noordhoff uitgevers) (in Dutch)

BINAS (in Dutch)

https://natuurkundeuitgelegd.nl/examenindex.php (in Dutch)

Presentation by Manjit Doosanjh

https://www.symmetrymagazine.org/article/november-2013/how-particle-physics-can-save-your-life

https://indico.cern.ch/event/505656/contributions/2178989/attachments/1286957/1914803/Medical_applications_-_Sp arsh.pdf

https://iopscience.iop.org/book/978-0-7503-1444-2/chapter/bk978-0-7503-1444-2ch1#bk978-0-7503-1444-2ch1s2

https://seeiist.eu/

https://enlight.web.cern.ch/media/videos/virtual-particle-therapy-centre

5) Best Practice Example

4 pillars of technology:

- Accelerating
- Detecting
- Computing

 Collaboration - Interdisciplinary unit between Biology and Physics on Medical Application of Particle Physics

Discussions on topics like FLASH for cancer treatment to inspire the new generation to participate in such projects to make them a reality.

5) Best Practice Example

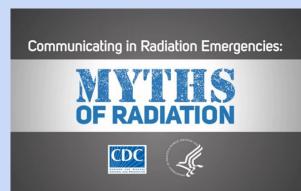
Imaging technique	physics	application	advantages	disadvantages
				Small radiation dose, soft tissue hardly visible
CT-scan				
			No radiation load	
	Reflection of sound wave			
Nuclear diagnostic				

DATA SHEET (BINAS)

- Techniques
- Physics
- Principle
- Application
- Example of an image

Medische	beeldvorming			ev.
tachminh	fyriiche waarden	regianutieprincipe	corporation	burld
echografie	frequentie gehidogolver: 1-20 MHz routine; tot 50 MHz intraveneus	reflectie van ultrageluid 2D, 3D en 4D (3D in de tijd)	zwangerschapsonderzoek, sportblessures, doorstroming vaatbed (Doppler), afbeeldingen van buikorganen	100
rðnigenfote	energie: 20-150 keV effectieve donie: 0,01-0,1mSv	verzwakking van röntgenstraling 2D	skelet, marrimografie, gebit, buikoverzicht, thorax, lingen, spijoverteringsleanad	9
doorlichting met röntgenstraling	energie: 50-125 keV effectieve donie: 0,1-20 mSv	venryukking van eintgenstealing in combinatie met eöntgencontrastmiddelen; levert röntgenfilmpjes 2D	beekkværning tijders operaties, functieondersock (slikken, maag en dærn), angio- en eardiografie (afbeelding en katheterisatie hært- en bloedvære, stening en dotterbehandefangen)	P.
CT (computer- tomografie)	effectieve dosis: 0,1-20 mSv	verzwakking van röntgenstraling varsait 360° levert dwarschoorsneeden 3D heelden 4D datasets	kankeronderzock, underzock naur zachte weefsch, spoedeisende hulp (deuels, bloedingen), perfusie (herseninfarct), afbeelding van het hare 3D oprame van orgaan binnen 0,5 s	
MRI (magnetic resonance imaging)	magneetveld: 0,1-12T frequentie radiogolven: 42,58 MHz T ⁻¹	resonantie van protompins met radiogolven in een uitwendig magnetisch veld (Zeemaneffect) 3D en 4D	onderzoek naar hersenen, gewrichten, buikorganen, hart- en hersenfunctie, diffusie van water in weefsela, doorbloeding van organen, borsten	
PET (positron- rmioic- tomografic)	energie: 0,511 MeV effectieve dosis: 1,5-5 mSv	gelijktijdige registratie van fotonen uit annihilatie van positronen uit radioactief vervalproces geeft lokalisatie van radioactieve stof in 3D	werfschinderzoek, kankeronderzoek (staak in combinatie met CT-scan), onderseek naar transportprocessen stofwisseling	P
gammacamera	effectieve doxis: 2-16 mSv	registreren van garomastraling uit radioactieve vervulprocessen 2D of 3D (SPECT: single photon entission computed tomography)	kankeronderzoek, opsporen van uitsasiingen, hartfunctie (SPECT), onderzoek naa de fysiologie van organen	查 主

29


Imaging technique	physics	application	advantages	disadvantages	
X-ray	Absorption of X-ray radiation	Bones, theet, lungs	Cheep, fast	Small radiation dose, soft tissue hardly visible	
CT-scan	Absorption of X-ray radiation	Soft tissue Cancer research	3D image, large contrast	High radiation load	
MRI	Resonance of H-cores in dipole field	Brain, joints,	No radiation load	Blood flow	
Echo	Reflection of sound wave	Pregnancy, blood flow	No radiation load, cheap, fast	No clear image, Not suitable bones	
Nuclear diagnostic	<i>Emitting radioactive radiation, radioactive decay</i>	Using tracer, organ function,locate tumors	Good image of the processes in the body	Medium high radiation load	

Summary

Teaching medical applications of particle physics should be part of the curriculum:

- The best example of application of particle physics research
- Information Career opportunities
- Many misconceptions amongst students
- Practical example of the use of particle accelerators, particle detectors and treatments

Thank you for listening!

