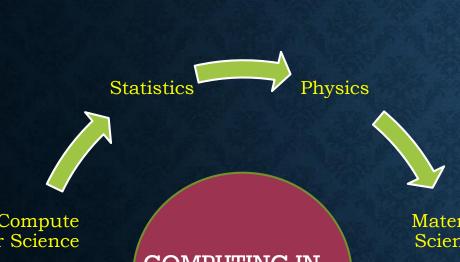

COMPUTING IN PARTICLE PHYSICS

The coexistence of particle physics and computing.


Grant Pusey¹, Manuela Ioia², Olha Doskochynska³, Max Duijsens⁴

Churchlands Senior High School, Perth, Australia | gpusey@churchlands.wa.edu.au
 Transylvania College the Cambridge International School in Cluj, Cluj-Napoca, Romania | manu_ioia@yahoo.ro
 Liceum after Ivan Puluj, Lviv, Ukraine | olyasokil1@gmail.com
 HAN University of Applied Sciences, Nijmegen, Netherlands | max.duijsens@han.nl

CURRICULUM & CLASSROOM CONNECTIONS

COMPUTING IN PARTICLE **PHYSICS**

Maths

Particles & radiation Mechanics & materials

Measurements & errors

Electricity

Fields & their

consequences

Nuclear physics

Engineering 1 vsics

Electronics, Catics

Material Science

Algebra

Logarithmic & exponential functions

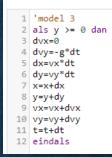
Trigonometry

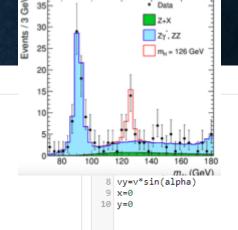
Differentiation & integration

Differential equations

Complex numbers

Representation of data


Probability


Discrete random variables

Chemistr

Basic circuits theory Electronics devices & circuits Power supplies **Data convertors**

Data representation Communication & internet technologies Hardware System software Security **Monitoring & control systems**

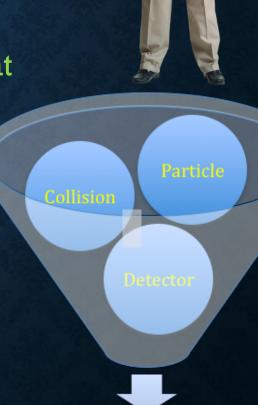
Materials structures Metals, polymers ceramics **Advanced chemistry Transformation of materials Advanced** materials

CURRICULUM & CLASSROOM CONNECTIONS-

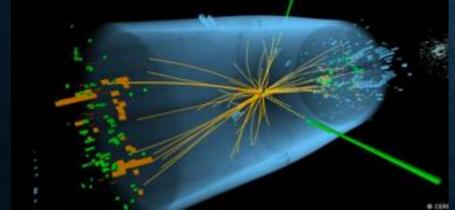
Scientist

criticalthinking

reflective

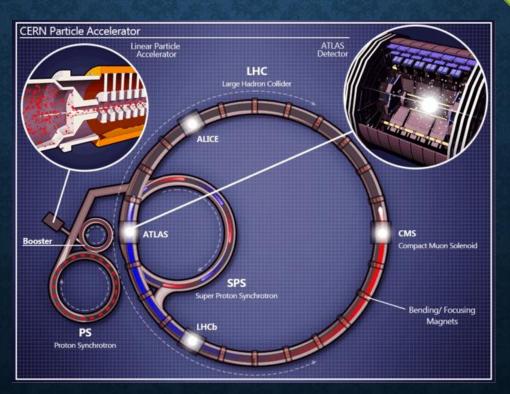


innovative



What skills does student need to have?

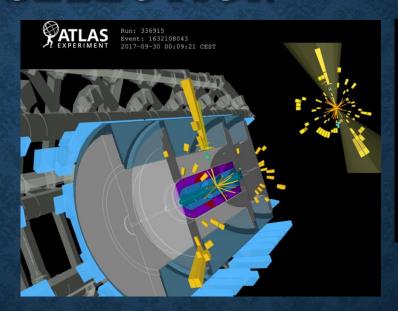
- -domain knowledge
- -problem solving
- -data preparation
- -data analysis & exploration
- -creating dashboards & reports
- -communication skills

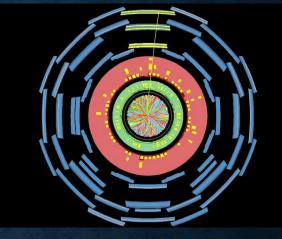

KEY IDEAS - LHC CONTROL SYSTEMS

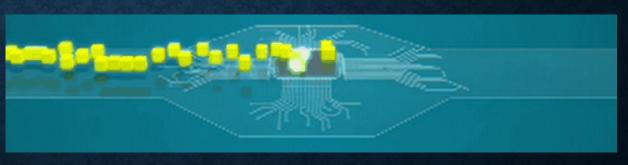
- Beam Injection
- Control
- Monitoring
- Feedback

LHC Beam Control

Collision Data
Acquisition

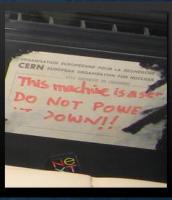

Simulation




Data
Processing &
Storage

KEY IDEAS – SIMULATION AND DATA SELECTION SELECTION

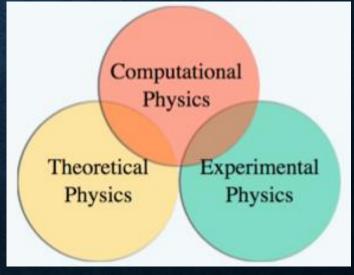
- Simulation (Monte Carlo data)
 - Event generation
 - Detector simulation
 - Digitisation
 - Reconstruction
- Data Selection
 - Triggering
 - "From hit to bit"
- The Future
 - Programmable FPGAs
 - Quantum Computing (?)
 - Al for data selection (the future)



KEY IDEAS - DATA PROCESSING AND STORAGE

- History (creation of WWW)
- Funnelling to data centre (10Gb/s)
- Data storage
- Data Grid Processing
- Future
 - Bandwidth Solutions
 - Storage Solutions





POTENTIAL STUDENTS' CONCEPTIONS

- CERN needs supercomputers
- Have to be really good at physics, mathematics and/or programming to work in data analysis for CERN --> motivated though! :-)
- Only for boys
- Too complicated for regular students
- It has no relevance to our daily lives
- Difficult to deal with the errors
- Possibly not an engaging topic for some

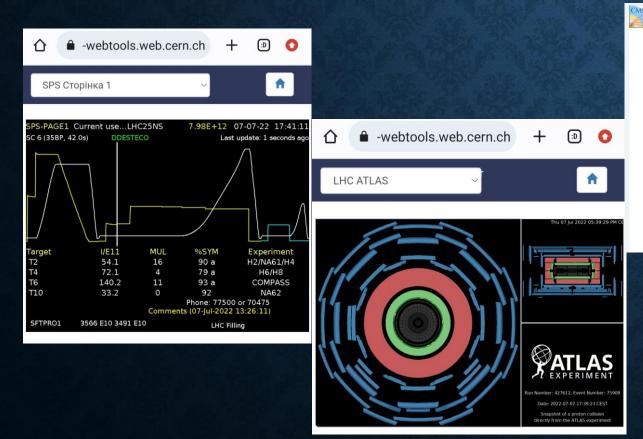
TOM GAULD for NEW SCIENTIST

POTENTIAL CHALLENGES

- Learning specific mathematical, physics, and/or computational skills
- Doing a Citizen Science type project
- Building a supercomputer with video processing chips from game computers

But...

...you could start with some easy calculations, so they get a feel for the amount of data produced at CERN!


Just for position data with one detector you get: ~100 M channels: 27+ bits, every particle hits ~15 channels, ~500 particles per collision, and with 40 M collisions per second we get ~8,100,000 Mbps!

100 out of 40 M collisions, four detectors, ~300 days of operation per year: 300 Tb!

HELPFUL MATERIAL AND RESOURCES

https://op-webtools.web.cern.ch/vistar/vistars.php?usr=LIN

• https://scoollab.web.cern.ch/sites/default/files/Particle_v2/index.html

Including "Masterclasses" — fully web-based

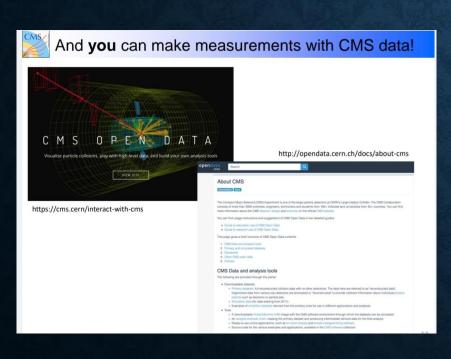
derstanding the structure of the proton (spoiler: it is NOT aud!) just by looking at images!

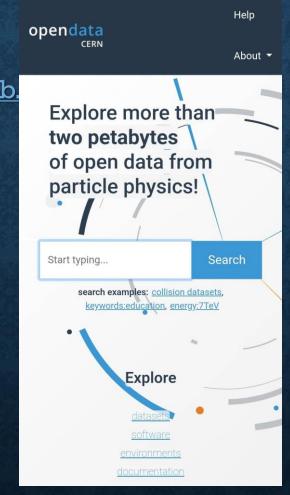
Sep Wedd.

Teather Class. 1-g Eventor Pur., 1/Event. 1 | of 100|

COLL Endough ()

HOAL Conser (o)


HOAL


http://www.i2u2.org/elab/cms/ispy-webgl/

http://www

HELPFUL MATERIAL AND RESOURCES

- http://opendata.cern.ch
- https://opendata-education.github.

Open data in education

Materials

Open data

Jupyter Notebook environment

Making your own material

Participate in development work

Materials on GitHub

YouTube channel

Welcome to open data!

This is a collection of exercises that use open authentic data suitable for high school education to get familiar with programming and data processing.

Interactive Jupyter Notebooks are used as the learning