

Massimiliano Putignano

Development of a Beam Profile Monitor Based on a Supersonic Gas-Jet Curtain

Website: www.quasar-group.org Email: massimiliano.putignano@quasar-group.org

Introduction

- Gas-Jet Simulations
- Experimental Setup
- Outlook

Massimiliano Putignano - 25th Nov. 2009 - Slide 2/16

(10⁻¹¹ mbar)

Technical advantages

- Low perturbation to beam (storage ring!).
- Low perturbation to vacuum (directionality).
- Tunable count rate/perturbation.
- Simplicity and compactness!
- Inclusion in the Reaction Microscope
- Investigation of the Gas-Jet

Massimiliano Putignano - 25th Nov. 2009 - Slide 3/16

Massimiliano Putignano - 25th Nov. 2009 - Slide 6/16

Massimiliano Putignano - 25th Nov. 2009 - Slide 7/16

- Thermal Equation of state

Massimiliano Putignano

Definition of int. energy and measurement of specific heat.

$$dh = \hat{C}_p dT$$

- 25th Nov. 2009 -

Slide 8/16

Massimiliano Putignano

- 25th Nov. 2009 -

QÚASAR	Curtain behavioral trends – Self consistency tests							
GROOP	Introduction	Numerical Simulatio	uns E	Experimental Setup			Outlook	
$W = f_1(SW, \beta, S)$ $W = f_3(\alpha, \beta, SD)$ $\frac{\partial W}{\partial \alpha} = f_1(SW, \beta)$ $\frac{\partial W}{\partial \beta} = f_1(SW, \beta)$	$(D, Dist) \cdot \alpha + f_2(S)$ $(D, Dist) \cdot SW + f_4(\alpha)$ $(D, Dist) \cdot SW + $	$W, \beta, SD, Dist)$ $w, \beta, SD, Dist)$ $w = f_1'(SW,)$ $w = f_3'(\alpha,)$	M maxαβαSWΔSDαDist	CM _{max} Λ (β, SD) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α	M _{max} 70%	D λ · · · · · · ·		
$W = g_1(\beta, S)$ $g_2(\beta, S)$ $g_3(\beta, SD,$ $g_4(\beta)$	$(D, Dist) \cdot \alpha +$ $(D, Dist) \cdot SW +$ $(Dist) \cdot \alpha \cdot SW +$ (SD, Dist)	$\frac{\partial W}{\partial \alpha} = g_1(\beta, SL)$ $\frac{\partial W}{\partial SW} = g_2(\beta, SL)$	$(D, Dist) + g_3$ $(SD, Dist) + g_3$	(eta,SD,T)	Dist)∙S 9, Dist)∙	W α		

Massimiliano Putignano - 25th Nov. 2009 - Slide 12/16

Massimiliano Putignano - 25th Nov. 2009 - Slide 14/16

Massimiliano Putignano - 25th Nov. 2009 - Slide 15/16

Massimiliano Putignano - 25th Nov. 2009 - Slide 16/16

QUASAR	Self-Mixing Laser Velocimeter: Performances						
	Introduction	Numerical Simulations	Experimental Setup	Outlook			
 Self-M Use 	l ixing Inter d for measur	ferometry ement of					
• D • V)isplacement /elocity /ibrations						
– Targ • S	gets used: olids						
L – L – Info char	iquids rmation on o nnel	direction with a sing	gle interferometri	iC			
— Low — High — Low	intensity ba Resolution cost (≈נגנ)	ckscattered light ne (≈1 μm)	eeded (-90 dB)				

Massimiliano Putignano - 25th Nov. 2009 - Slide 17/16

- Acknowledgements:
 - Kai-Uwe Kühnel
 - Angela Intermite
 - Carsten P. Welsch
- References:
 - 1. M.Putignano *et al*: <u>A Fast, Low Perturbation Ionization Beam Profile Monitor Based on a</u> <u>Gas-jet Curtain for the Ultra Low Energy Storage Ring</u> - Hyperfine Interaction, accepted.
 - 2. M.Putignano *et al*: <u>Design of a nozzle-skimmer system for a low perturbation ionization</u> <u>beam profile monitor</u> – DIPAC09 Proceedings.
 - 3. M.Jugroot *et al*: <u>Numerical investigation of interface region flows in mass spectrometers:</u> <u>neutral gas transport</u> J. Phys. D: Applied Physics, vol. 37 (2004) pp 1289.
 - 4. Y. Hashimoto *et al*: <u>Oxygen gas-sheet beam profile monitor for the synchrotron and</u> <u>storage ring</u> - Nucl. Instr. Meth. Phys. Res. A 527 (2004) 289.

Massimiliano Putignano - 25th Nov. 2009 - Slide 18/16