



# CERN Isolde and Rex Beam Instrumentation

#### By Gerrit Jan Focker, CERN/BE/BI





#### Where is CERN







# Where at CERN is Isolde



 Isolde gets its protons from the PS-"Booster" machine
Proton Energy 1GeV or 1,4GeV
Proton Current up to 2µA





#### Where at CERN is Isolde







#### **Isolde Machine**



#### 24/11/2009





# **Isolde Machine**

- Two Isolde machines: GPS (General Purpose Separator) One Analysing Magnet HRS (High Resolution Separator) Two Analysing Magnets RFQ for beam cooling Target: many different versions Intensity: up to 10<sup>11</sup> particles/second Ionisation: normally one electron taken off Acceleration Voltage: (up to) 60kV
- Focussing and deflection lenses are electrostatic (not mass-dependent)







Picture taken from Isolde web-site

24/11/2009





#### **Rex Post-accelerator**



- Isotopes are trapped,
- Transported to "EBIS" for charge-breeding
- Mass-separation
- Acceleration to 3MeV





#### **Rex Post-accelerator**







#### **Isolde and Rex Beam Instrumentation**

- Beam Scanners
- Wire-grids
- Fixed Needle Beam Scanner (FNBS)
- Faraday-cups
- Tape-stations
- Rex Instrumentation Boxes
- Not permanently installed:
  - Fast Faraday-cup
  - Emittance-meter





#### **Isolde Beam Scanners**

 Original idea of G. Sidenius and A. Lindahl from the Niels Bohr Institute in Copenhagen



- Protective plating taken off
- Driving wire barely visible





### **Isolde Beam Scanners**



- Small chariot driven by stepping motor
- The chariot contains the pre-amplifier and the needle is directly mounted at it
- Only one position reference (with a slotted opto-coupler)
- The scanner takes data in only one direction
- speeds up to 1m/s possible, typical scanning speed up to 400mm/s
  - The scanning-speed must be reduced at <=500pA due to pre-amplifier bandwidth</p>
- Electrical input-sensitivity 25pA (full scale) to 20μA





#### Isolde Beam Scanners



#### 29 scanners, 5 horizontal and 24 X/Y





#### **Isolde Beam Scanners**









### **Isolde Beam Scanners**







#### **Isolde Beam Scanners**



#### 24/11/2009

#### Gerrit Jan Focker, CERN/BE/BI





#### **Isolde Beam Scanners**







# **Isolde Beam Scanners**

- Alternative measurements with scanners
  - By positioning the needle in the centre of the beam the intensity in the time-domain can be measured
  - By positioning the needle at the edge of the beam instability of the beam position can be measured



# **Isolde Wire-grids**

- Wire-grids are used where the environment is expected to be too radio-active for scanners
- S grids of 31 \* 31 wires (spacing 2.5mm)
- 2 grids of 40 \* 32 wires, (the spacing of the vertical wires is halved in the middle)
- 2 grids of 20 horizontal wires (spacing 1mm), combined with a fixed slit and a hole
- 1 special grid for test-purposes in front of the second HRS-magnet, 29 \* 8 wires, spacing 8mm
- Electrical sensitivity 20pA (full scale) to 2mA





#### **Isolde Wire-grids**







#### **Isolde Faraday-cups**



- Not counting REX there are 32 "standard" Faraday-cups (opening 25mm)
- And 2 large Faraday-cups at the Frontends
- Repeller-voltages 130V to 250V
- Readout:
  - Problems with read-out due to long cables
  - New electronics in test at Rex-Trap





#### **Isolde Faraday-cups**



#### Standard Unit with X/Y scanner and Faraday-cup

24/11/2009

Gerrit Jan Focker, CERN/BE/BI

CERN

Ditanet Workshop on 'Low Current, Low Energy Beam Diagnostics'



### Isolde Faraday-cups





#### 75mm Faraday-cup for Frontend

Gerrit Jan Focker, CERN/BE/BI





#### **Fixed Needle Beam Scanner**



- Fixed wire of 0,05mm instead of moving needle
  - Can be moved in/out pneumatically
  - No mechanical movement while scanning
- Beam deflected electro-statically over a distance of maximum +/- 9,8mm
  - With saw-tooth signal of 1 to 10 seconds
- Electrical Input-sensitivity from 25pA (full scale) to 200μA





### **Isolde Tape-station**

 The Tape-station allows to measure radioactive particles even if they cannot be seen by other beam instrumentation

#### The Tape-station is used to:

- Optimise and check the target and ion-source
- Optimise the position of the proton-beam
- Measure half-lives of isotopes by using a Multichannel Analyser







# **Isolde Tape-station**

- An electrostatic Beam-gate is used to obtain an accurate timing for the collection of particles
- After Collection the tape is moved rapidly to transport the sample to the detector(s)
- Standard detector is a scintillator and photomultiplier
- The tape is Mylar with an aluminium layer







# **Isolde Tape-station**



#### **The old Tape-station**

 First designs dated 1974, used electronics probably from 1978 or 1979

Picture from Erwin Siesling





### **Isolde Tape-station**





Release-curve

Picture from Martin Eller





# **Isolde Tape-station**



# New Tape-station (being tested)

- Constructed in Strasbourg at the IPHC by Philippe Dessagne and his team.
- Transport time 210ms



### Isolde Tapestation







#### **Isolde Instrumentation**



24/11/2009





### **Rex Instrumentation Box**

- Designed and built by Leuven University
- Collimator: rotating disc with different slits
  - Eventually used to mount filters
- Faraday-cup (25mm)
- Imaging system
- 9 boxes installed









# **Rex Instrumentation Box**

#### Imaging system

- Foil
- Grid
- MultiChannelPlate
- Phosphor screen
- CCD Camera







# **Rex Instrumentation Box**







#### **Fast Faraday-cup**



 (Not connected to control system)
Allows to measure timing effects: (e.g. recovery of beam after proton pulse) CERN

Ditanet Workshop on 'Low Current, Low Energy Beam Diagnostics'



#### **NTG Emittance Meter**



- System with moveable slit and moveable grid
- Not connected to control system
- System is moved around to wherever it is needed





#### Conclusion

# Reliability: scanners improved More sensitive? => limits due to environment Missing equipment: Allison scanner (used at Triumf)

#### Thanks for listening!