

Workshop on Low Current, Low Energy Beam Diagnostics November 23-25th 2009, Groβsachsen, Germany

Experiences from CRYRING diagnostics

The CRYRING facility

Ions That Have Been Stored in the Ring

The following ions have been stored in the ring, most of them have also been accelerated, and some decelerated. All but a few have been used for physics experiments.

Singly charged positive atomic ions:

 $H^{+}, D^{+}, {}^{3}He^{+}, {}^{4}He^{+}, {}^{7}Li^{+}, {}^{9}Be^{+}, {}^{11}B^{+}, {}^{12}C^{+}, {}^{14}N^{+}, {}^{16}O^{+}, {}^{40}Ar^{+}, {}^{40}Ca^{+}, {}^{45}Sc^{+}, {}^{48}Ti^{+}, {}^{56}Fe^{+}, {}^{16}He^{+}, {}^{16}He^{+}$ 83 Kr⁺, 84 Kr⁺, 86 Kr⁺, 86 Sr⁺, 129 Xe⁺, 131 Xe⁺, 132 Xe⁺, 138 Ba⁺, 139 La⁺, 142 Nd⁺, 151 Eu⁺, 197 Au⁺, $^{208}Pb^{+}$

Positive molecular ions:

H₂⁺, HD⁺, H₃⁺, D₂⁺, H₂D⁺, ³HeH⁺, ³HeD⁺, ⁴HeH⁺, D₃⁺, He₂⁺, LiH₂⁺, D₅⁺, BH₂⁺, CH₂⁺, NH2⁺, OH⁺, CH5⁺, NH4⁺, H2O⁺, H3O⁺, HF⁺, ND3H⁺, CD5⁺, ND4⁺, D3O⁺, C2H⁺, CN⁺, C₂H₂⁺, HCN⁺, C₂H₃⁺, HCNH⁺, C₂H₄⁺, CO⁺, N₂⁺, N₂²⁺, ¹³CO⁺, N₂H⁺, C₂H₅⁺, H¹³CO⁺, NO⁺, D¹³CO⁺, CH₃O⁺, CF⁺, O₂⁺, CH₃NH₃⁺, CH₃OH⁺, CH₃OH₂⁺, H₂S⁺, CD₃O⁺, PD₂⁺, $N_2H_7^+$, $D_2^{32}S^+$, $CD_3OH_2^+$, CD_3OD^+ , $H_5O_2^+$, $D_2^{34}S^+$, $D_3^{32}S^+$, $CD_3OD_2^+$, $^{13}CD_3OD_2^+$, $D_3^{34}S^+$, $C_3H_4^+$, $D_2^{37}Cl^+$, $D_5O_2^+$, CH_3CNH^+ , $C_3D_3^+$, $N_2D_7^+$, N_3^+ , $C_3H_7^+$, NaD_2O^+ , CO_2^+ , HCS⁺, C₂H₅O⁺, DN₂O⁺, C₂H₅OH⁺, CO₂D⁺, CD₃CDO⁺, NO⁺·H₂O, O₃⁺, DCOOD₂⁺, CD₃OCD₂⁺, C₃D₇⁺, CF₂⁺, NO⁺·D₂O, DC₃N⁺, CD₃OCD₃⁺, N₃H₁₀⁺, DC₃ND⁺, CD₃ODCD₃⁺, H₇O₃⁺, COS⁺, N₂O₂⁺, CH₃OCOH₂⁺, D₇O₃⁺, N₃D₁₀⁺, C₄D₉⁺, S¹⁸O₂⁺, ArN₂⁺, H₉O₄⁺, CD₃COHNHCH₃⁺, CD₃CONHDCH₃⁺, C₆D₆⁺, PO³⁷Cl⁺, H₁₁O₅⁺, C₂S₂H₆⁺, $C_2S_2H_7^+$, $H_{13}O_6^+$, $PO^{35}Cl_2^+$

Negative atomic ions: H⁻, Li⁻, F⁻, Si⁻, S⁻, Cl⁻, Se⁻, Te⁻

Negative molecular ions: $CN^{-}, C_{4}^{-}, Si_{2}^{-}Cl_{2}^{-}$

Range of energies per nucleon: 38 eV/u - 92 MeV/u

Range of total energies: 5 keV – 1.4 GeV

CRYRING diagnostics

- Beamlines:
 - Fluorescent screens
 - Faraday cups
 - Strip detectors
- Storage ring:
 - Faraday cups (one with fluorescent screen)
 - Electrostatic pickups
 - Schottky detector
 - DCCT (Bergoz)
 - ACCT (ICT, Bergoz)
 - Residual gas ionization beam profile monitor
 - Neutral particle detectors

Fluorescent screens

- CHROMOX $(Al_2O_3(Cr))$
 - Sensitivity varies a lot depending on ion species, energy and pulse length but normally pulses of a few tens of nA can be seen with a standard CCD camera. Pulse lenghts can be made longer to increase intensity. Darken with exposure.
- CsI(TI)
 - Higher sensitivity, especially for low energy ions, but (probably) not UHV compatible

Not used for intensity measurements

Faraday cups

 Gain up to 10⁸ V/A. Higher gains (up to 10¹² V/A) available, but rise times become unpractical for pulsed beams.

CRYRING diagnostics

- Beamlines:
 - Fluorescent screens
 - Faraday cups
 - Strip detectors
- Storage ring:
 - Faraday cups (one with fluorescent screen)
 - Electrostatic pickups
 - Schottky detector
 - DCCT (Bergoz)
 - ACCT (ICT, Bergoz)
 - Residual gas ionization beam profile monitor
 - Neutral particle detectors

Electrostatic pickups

- Cylindrical, diagonal cut
- Preamplifier input circuit with two FETs, type 2SK300, connected in parallel. The equivalent input noise is 5 µVrms
 @ 10 MHz BW (G=52 dB).
- Sum signal mainly used with spectrum analyzer for intensity monitoring and optimization

Automatic optimization

Schottky detector

Schottky signal from a beam of Xe³⁶⁺ ions showing the transition of the beam to an ordered state at around 1000 particles

Current measurements DCCT Bergoz, about 1 µA noise p-p

Current measurements DCCT

Current measurements DCCT

Current measurements ICT (Integrating Current Transformer)

LabView program to normalize pickup signal and ICT signal to extend the measurement range

Current measurements ICT

H²S⁺ bunched beam current during 10 s, averaged over 66 cycles (BW=20 Hz)

Current measurements ICT

Current measurements ICT

Developments:

- A low noise Wideband Amplifier has been designed and placed close to the Integrating Current Transformer to give 4 V/A sensitivity.
 - Gain
 Noise
 80dB
 1 nVrms/√Hz
 - Bandwidth
 1 kHz-10 MHz
- A Differential Input Double Integrator with 33.3% duty cycle
- Low Pass Filter
 - Bandwidth
 20/100 Hz (20 dB/decade)
- A Programmable Phase Shifter

Current measurements ICT+PU

MCP neutral particle monitor

Beam profile monitor

Beam profile monitor, time resolved measurement of transverse cooling

Vertical profiles of an F⁶⁺ beam during successive 61-ms intervals, starting 61 ms before the electron beam is realigned with the ion beam and cooling begins.

From Danared et al., EPAC 2000, "Studies of Transverse Electron Cooling", http://cern.ch/AccelConf/e00/PAPERS/WEOAF101.pdf

Thank you for your attention!

