Detectors and what we use them for at ELISA

Kristian Støchkel

Department of Physics and Astronomy

Aarhus University

Low Current, Low Energy Beam Diagnostics, November 25, 2009

ELectrostatic Ion Storage ring in Aarhus (ELISA)

Elisa data

Ring design:

8.3 m in circumference
160° deflectors
10° deflectors
Stores ions with energies up to 22 keV per charge

Beam diagnostics:

4 horizontal pickups 4 vertical pickups Scrapers MCP detectors

ELectrostatic Ion Storage Ring Aarhus (ELISA)

S.P. Møller, *NIM A* **394**, 281 (1997).

J.U. Andersen, J.S. Forster, P. Hvelplund, T.J.D. Jørgensen, S.P Møller, S. Brøndsted Nielsen, U.V. Pedersen, S. Tomita, H. Wahlgreen, *Rev. Sci. Instrum.* **73**, 1284 (2002).

ELISA = ELectrostatic Ion Storage ring Aarhus

Commisioned in 1999

ENTIRELY ELECTROSTATIC

Advantages:

Store ions of fixed charge and energy with arbitrary mass

Useful for study of heavy ions: fullerenes, biomolecules and other macromolecules

Combined with an electrospray ion source and a multipole ion trap to accumulate the ions for injection into ELISA.

Two others are operating in Japan, rings in Stockholm, Frankfurt and Heidelberg are under construction.

Three pieces of information

Lifetimes with respect to dissociation

At what wavelengths ions absorb light

Daughter ion masses

Electrospray ion source

22-pole ion trap

LASER EXCITED IONS

Lifetimes for statistical dissociation of photoexcited ions

Channeltron detector

LIFETIME SPECTRA OF C₆₀²⁻ WITH RESPECT TO ELECTRON LOSS

SPECTROSCOPY OF C₆₀²⁻ STATES

ABSORPTION SPECTRA OF C₆₀²⁻ AFTER DIFFERENT STORAGE TIMES

Glass plate detector / secondary electron detector.

Neutrals make secondary electrons when they hit the glass plate while most of the laser light is transmitted. Works down to the UV-range Momentum imaging of ions stored in ELISA

Momentum imaging of ions stored in ELISA

ELISA: A new scheme for daughter ion mass spectrometry

ELISA: A new scheme for daughter ion mass spectrometry

Signal in MCP detector as a function of scaling parameter x and

Time-resolved fragmentation mass spectrometry on the μ s to ms time scale

Dissociation of a molecule in the ring

1) Molecule was stored in the ring

2) After 1.1 ms, ring voltages were switched to store daughter ion

3) After 1.15 ms of storage, the daughter ion was dumped in the MCP detector

Consideration for switching times, type of switches ...

Switch times faster than 1 μ s Voltages up to 3 kV Vertical needs to be bipolar Injection and dump switch – 3 levels.

Horizontal deflectors: 16 new solid state switches with power supllies

Vertical deflectors: Replaced by fast amplifiers (bipolar).

All is integrated into the control system.

Photodissociation of protoporphyrin ions in ELISA with 390-nm light

Neutrals from collisions with residual gas

Laser pulse fired after 12.4 ms. Daughter ion mass spectra were recorded right after (t_{1A}) and after 190 µs (t_{1B}) of storage.

Daughter ion mass spectra

High-energy CID spectrum (50-keV collisions) recorded at another instrument

ELISA switch at t_{1A}: Fragmentation due to both onephoton and two-photon absorption

ELISA switch at t_{1B} : Fragmentation due to one-photon absorption since all ions that have absorbed two photons have decayed. K. Støchkel, U. Kadhane, J.U. Andersen, A.I.S. Holm, P. Hvelplund, M.-B. S. Kirketerp, M.K. Larsen, M.K. Lykkegaard, S. Brøndsted Nielsen, S. Panja, and H. Zettergren,

"A new technique for time-resolved daughter ion mass spectrometry on the microsecond to millisecond time scale using an electrostatic ion storage ring,"

Rev. Sci. Instrum. **79**, 023107 (2008).

ELISA experiments

- Collisional cross sections (geometrical size of molecule)
- Radiative cooling (emission from infrared active vibrations)
- Lifetimes after photon absorption:

statistical decay processes

excited state lifetimes, *e.g.*, triplet states

- Electron autodetachment lifetimes
- Absorption spectroscopy

THE GROUP

Principal investigators:

Preben Hvelplund	Jens Ulrik Andersen	Steen Brøndsted Nielsen
<i>Post docs:</i> Jean Wyer	Kristian Støchkel	
Students:		
Maj-Britt S. Kirketerp	Lisbeth M. Nielsen	Camilla S. Jensen
Klaus Eriksen		

FNU	Lundbeckfonden	Carlsbergfondet	Villum Kann Rasmussen
-----	----------------	-----------------	-----------------------

Heating by photon absorption

Energy distribution changes in time

Table I Design parameters for ELISA			
General parameters			
Injection energy Circumference Revolution time Betatron tunes (Q_H, Q_V) Chromaticities (ζ_H, ζ_V) Momentum compaction (α_p)	25 keV 6.28 m 2.9 μs (p), 77 μs (C ₆₀) 1.206, 1.439 - 1.7, - 1.3 0.50		
160° spherical deflectors Electrode radii Nominal voltages 10° deflectors	235 and 265 mm ±4.0 kV		
Plate distance Plate length Nominal voltages	50 mm 100 mm ± 2.2 kV		
Electrostatic quadrupoles			
Inscribed radius Electrode length Nominal voltages	26.2 mm 50 mm ± 0.43 kV		
Chopper and inflector			
Rise/fall time	< 200 ns.		

