Tracking Fit Studies

Angelo Santos - 2020/06/24

SPRACE

- Dataset (30k tracks)
- pT > $1 \mathrm{GeV} / \mathrm{c}$
- $|n|<0.5$
- no ϕ cut

Recent Results

Track Reconstruction

- 10 hits per track
- Machine Learning Method
- BDT-GBM ((x, y, z) coordinates)
- 5th hit from previous 4 ones
- Samples
- Training: 21k tracks (70\%)
- Optimization: 3k tracks (10\%)
- Application: 6k tracks (20\%)

Discussing about Failures

- Maybe failures are not that bad
- Failures to find a perfect track (according the Kaggle challenge)
- does not mean a failure to find the particle features
- and may be only due hits (from different tracks) very close to each other
- We can check it

Tracking Fit

Fitting Tracks

$p(x, y)=\sqrt{p_{x}^{2}+p_{y}^{2}} \equiv p_{T}$

$$
p_{T}=q B R
$$

$$
\frac{p_{T}}{R}=q \cdot B=\text { constant }
$$

Constant value
would come
from a fit in
pT vs. R

Phenomenology Expectations

21k Tracks

- What would we expect to get from?
- A line consistently increasing
- A smooth line
- Highest radius less than 300 m
- The higher pT , less points

Unexpected Result from a Circular Fit

- But real life is hard
- Two different scenarios
- Points
- consistently increasing

■ in a smooth line

- Points

■ insensitive to the formers
■ without any structure

- Highest radius
- lower than 6 m
- Constant $=2.8 \mathrm{GeV} / \mathrm{c} / \mathrm{m}$
- Highest expected radius: 40

Unexpected Tracking Fit: Hypophysis

- Failure to fit tracks
- R library (circular) may not be good enough
- Would be the best scenario (unfortunately)
- Presence of outliers
- But are not expected to be so much
- The constant is not a constant
- It is a residual assumption
- But must to be considered if the two first hypophysis are not confirmed
- It is mandatory to analyze how far/close
- points from tracking fit
- are from real hits

Checking Fit

```
# R
> library(circular)
```

X-Y: Distance between Fitted and Real Points

21k Tracks

21k Tracks

2D Distance between Fitted and Real Points

Distance between Hit $_{\text {Fitted }}$ and Hit $_{\text {Real }}$ in XY Plane

Number of Fits Out of Difference $\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)$

Summing Errors over All Hits in Track

21k Tracks

21k Tracks

Before and After $\sum_{\text {Layers }}\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)<3 \mathrm{~mm}$

10k Tracks

Cutting Out Cases with Larger Fit Error

Before and After Cut in $\sum_{\text {Layers }}\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)$

Before and After Cut in $\sum_{\text {Layers }}\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)$

Fit Failures

Trying with Other Library

\# R
> library(pracma)

2D Sum of Errors

Distance between Hit $_{\text {Fitted }}$ and Hit Real in XY Plane

Number of Fits Out of Difference (Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)$

Checking Fits

Fitting Tracks with $\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)>30 \mathrm{~mm}$

Summing Errors over All Hits in Track

21k Tracks

Before and After $\sum_{\text {Layers }}\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)<2 \mathrm{~mm}$

Cutting Out Cases with Larger Fit Error

Before and After Cut in $\sum_{\text {Layers }}\left(\right.$ Hit $_{\text {fitted }}-$ Hit $\left._{\text {Real }}\right)$

Solution to Computing Constant

- Library "pracma" is very simple
- Does not allow to set initial ($\mathrm{r}, \mathrm{x} 0, \mathrm{y} 0$)
- Library "circular" is more complete
- Allow to inform to set initial (r, x0, y0)
- Providing triplet may be helpful

$$
R_{i}=\frac{p_{T}}{k_{i}}, k_{i}=\underbrace{\{0.2,0.4,0.6, \ldots, 4.0\}}_{\begin{array}{c}
20 \text { different } \\
\text { constant values }
\end{array}} \times 10^{-3} \frac{\mathrm{GeV/c}}{\mathrm{~mm}}
$$

- However
- Radius is computed from pT
- What about circumference center ($\mathrm{x} 0, \mathrm{y} 0$)?

Computing Center of the Circumference

Find Best Constant Value

21k Tracks

- $\mathrm{q} \cdot \mathrm{B}=0.6 \mathrm{GeV} / \mathrm{c} / \mathrm{m}$
- For High Energy Physics
- $\quad e=\sqrt{ }(4 \pi \alpha) . \sqrt{ }(\hbar c)$ $=0.30282212088 \sqrt{ }(\hbar \mathrm{c})$

My solution
for Tracking Fit

Find Best Triplet Combinations $\left(\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}\right)$

Best IrıpIet combinations: Looking closer
(I)

Best Triplet Combination: Looking Closer (II)

- The idea is to get mean values of ($\mathrm{r}, \mathrm{x} 0, \mathrm{y} 0$) using the best triplet combinations
- And use them as input for library "circular"

My Solution (I)

Fitting Tracks ($\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV} / \mathrm{c}$)

21k Tracks

My Solution (II)

21k Tracks

21k Tracks

My Solution (III)

Number of Fits Out of Difference $\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)$

21k Tracks

My Solution (IV)

Before and After Cut in $\sum_{\text {Layers }}\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)$

Before and After Cut in $\sum_{\text {Layers }}\left(\right.$ Hit $\left._{\text {Fitted }}-\operatorname{Hit}_{\text {Real }}\right)<3 \mathrm{~mm}$

My Solution (V)

Fitting Tracks with $\left(\right.$ Hit $_{\text {Fitted }}-$ Hit $\left._{\text {Real }}\right)>30 \mathrm{~mm}$

Fitting Tracks with $\left(\right.$ Hit $\left._{\text {Fitted }}-\operatorname{Hit}_{\text {Real }}\right)>30 \mathrm{~mm}$

To-Do List

- Use Optimization sample (3 k tracks) to validate the fit
- Compare pT values between
- values from dataset and values from fits on the reconstructed tracks

