Welcome to the 4th FCC Physics Meeting

FCC-ee PE&D Study; goals and plans

Alain BLONDEL, Patrick JANOT

Theory programme committee

- Ayres Freitas
- Janusz Gluza
- · Christophe Grojean
- Sven Heinemeyer
- Michelangelo Mangano (co-chair)
- · Matthew Mc Cullough
- Lian Tao Wang

Experiments and Detectors programme committee

- Alain Blondel (co-chair)
- Mogens Dam
- Patrick Janot
- Max Klein

International Programme Advisory committee for Experiments and Detectors

- Roy Aleksan
- Franco Bedeschi
- Stan Bentvelsen
- Greg Bernardi
- Richard Brenner
- Joel Butler
- Maria Chamizo
- Dmitri Denisov
- Jorgen D'Hondt
- Paula Eerola
- Sarah Eno
- Jorge Fernandez de Troconiz
- Paolo Giacomelli
- Beate Heinemann
- Christian Joram
- Mario Kadastik
- Young-Kee Kim
- · Christos Leonidopoulos
- Tadeusz Lesiak
- Anna Lipniacka
- David Milstead
- Farid Ould-Sada
- Jochen Schieck
- Felix Sefkow
- Frank Simon
- Rainer Wallny

Conveners

FCC detectors I: Calorimeters

- Martin Aleksa (CERN)
- ♣ Franco Bedeschi (Universita & INFN Pisa (IT))

FCC detectors I: PID

- ♣ Guy Wilkinson (University of Oxford (GB))
- ▲ Stephane Monteil (Université Clermont Auvergne (FR))

FCC detectors I: PID

- ▲ Stephane Monteil (Université Clermont Auvergne (FR))
- Guy Wilkinson (University of Oxford (GB))

FCC detectors I: Calorimetry

- ♣ Franco Bedeschi (Universita & INFN Pisa (IT))
- Martin Aleksa (CERN)

FCC detectors I: FCC-eh detector

▲ Max Klein (University of Liverpool (GB))

FCC detectors I: TDAO & Electronics

- ♣ Richard Brenner (Uppsala University (SE))
- Leonidopoulos (The University of Edinburgh (GB))

Vertex detector

Auguste Besson (Strasbourg)

Paula Collins (CERN)

Andreas Jung (Fermilab)

Tracker

Dominik Dannheim (CERN)

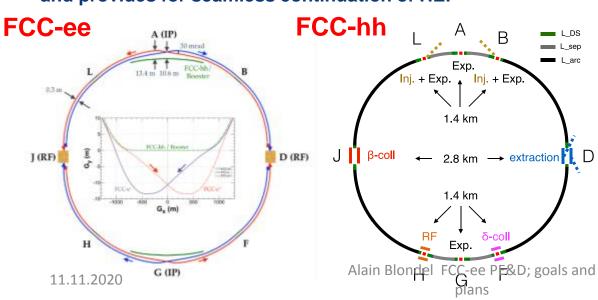
Bernhard Ketzer (Bonn)

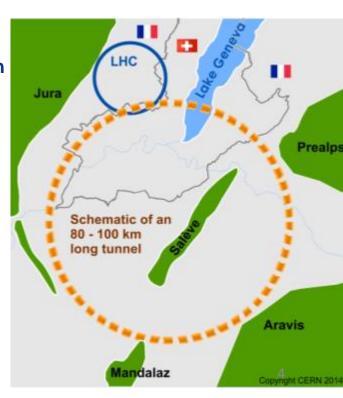
Franco Grancagnolo (Lecce)

MDI

Nicola Bacchetta (CERN)

Manuela Boscolo (Frascati)

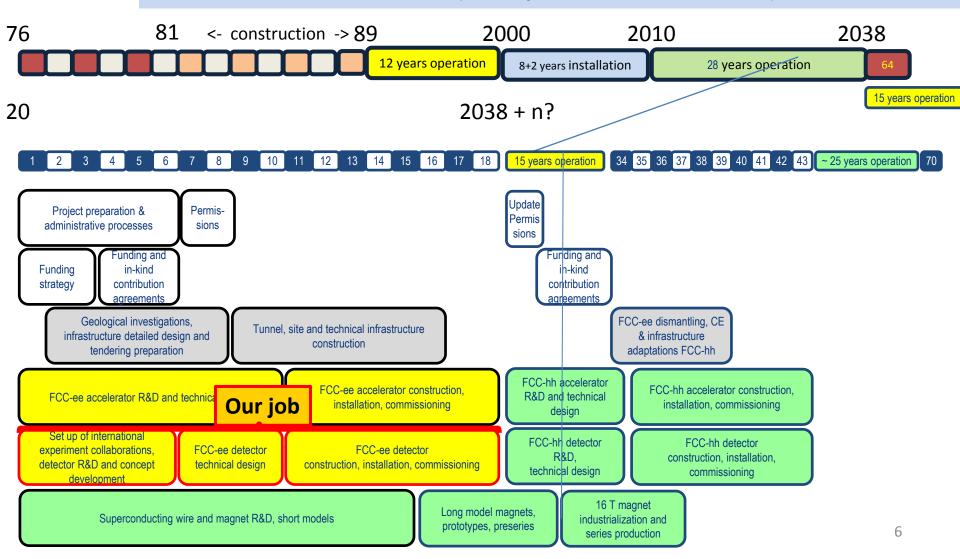

Angeles Faus-Golfe (Paris-Saclay)


Jorg Wenninger (CERN)

The FCC integrated program at CERN nspired by successful LEP – LHC (1976-203X) program

Comprehensive cost-effective program maximizing physics opportunities

- Stage 1: FCC-ee (Z, W, H, tt) as first generation Higgs EW and top factory at highest luminosities.
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options.
- Complementary physics
- Integrating an ambitious high-field magnet R&D program
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure.
- FCC-INT project plan is fully integrated with HL-LHC exploitation and provides for seamless continuation of HEP



CDR + Documentation

FCC-Conceptual Design Reports:

- Vol 1 Physics
 Vol 2 FCC-ee,
 Vol 3 FCC-hh,
 Vol 4 HE-LHC
 1338 authors
- A public presentation of the CDR was given on 4-5 March at CERN https://indico.cern.ch/event/789349/
- + 3d FCC Phys. Workshop Jan'20 https://indico.cern.ch/event/838435/
- 4th FCC Phys workshop Nov'21 https://indico.cern.ch/event/932973/
 → many further details can/will be found there!
- Preprints since 15 January 2019 on http://fcc-cdr.web.cern.ch/ and INSPIRE
- CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 4)
- ESPP summaries: FCC-integral, FCC-ee, FCC-hh, HE-LHC http://fcc-cdr.web.cern.ch/
- FCC-ee «Your questions answered» https://arxiv.org/abs/1906.02693v1
- "Circular vs linear, another story of complementarity" arXiv:1912.11871v2
- LOIs to Snowmass, challenges: https://indico.cern.ch/event/951830/

TIMELINE (Compare with LEP/LHC)

CHALLENGE 1 : why do we need a new accelerator after the LHC?

The Physics Landscape

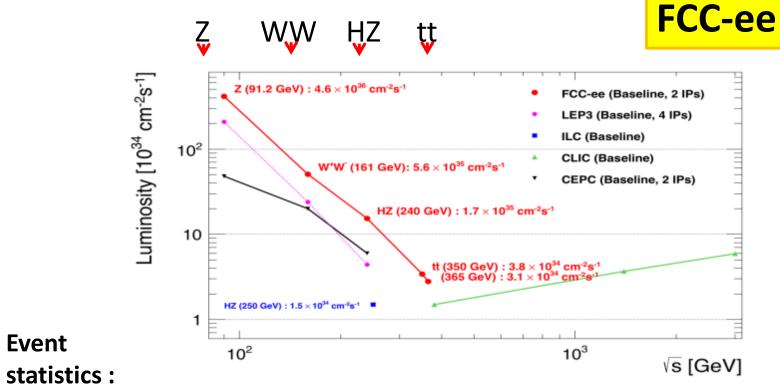
We found the Higgs ... the SM is 'complete' – but unexplained facts remain!

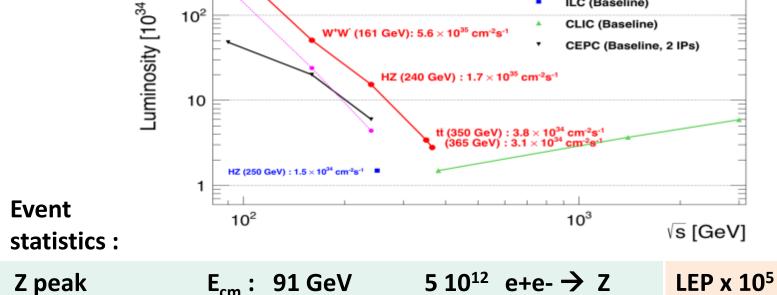
We are in a fascinating situation: where to look and what will we find?

For the first time since Fermi theory, WE HAVE NO SCALE (that is known

The next facility must be versatile with as broad and powerful reach as possible, as there is no precise target

more Sensitivity, more Precision, more Energy


FCC, thanks to synergies and complementarities, offers the most versatile and adapted response to today's physics landscape



Many opportunities...

- -- Starts at the end of HL-LHC
- -- Huge luminosities
- -- Excellent running conditions
 - -- low SR, Gaussian beams, Ø20mm beam pipe, 100mrad low angle MDI limit
- -- A beam of Higgs bosons!
- -- Centre-of-mass energy calibration at Z and W runs
- -- A Z factory! 5 TeraZ (3.5 10^{12} qq 20% bb ; 1.7 10^{11} each of e^+e^- , $\mu\mu$, $\tau\tau$; 10^{12} $\nu\nu$) Line-shape/EW/QCD/Fragmentation/Heavy Flavours/LLPs/LFV/LNV....
- -- full coverage of EWPO input parameters
- -- Several IPs -> more than one detector/answer to challenges
- -- two of the detector caverns are fit for FCC-hh detectors and could host large e+e- detectors
- -- and the first step towards FCC-hh!

E_{cm}: 161 GeV

E_{cm}: 240 GeV

E_{cm}: 350 GeV

WW threshold

ZH threshold

tt threshold

E_{CM} errors:

<100 keV

<300 keV LEP $\times 2.10^3$

2 MeV **Never done** 5 MeV Never done

10

10⁸

10⁶

10⁶

e+e- → WW

 $e+e- \rightarrow ZH$

 $e+e- \rightarrow tt$

FCC-ee run plan

Table 2.1: Run plan for FCC-ee in its baseline configuration with two experiments. The number of WW events is given for the entirety of the FCC-ee running at and above the WW threshold.

from the CDR

Phase	Run duration	Center-of-mass	Integrated		Event
	(years)	Energies (GeV)	Luminosity (ab ⁻¹)		Statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible	Z decays
FCC-ee-W	2	158-162	12	10^{8} W	W events
FCC-ee-H	3	240	5	$10^{6} 2$	ZH events
FCC-ee-tt	5	345-365	1.5	10^{6}	tt events

- 1. Order of Z,W and H points (and duration) can (and probably will) be changed in due time Meanwhile we all work on the same run plan.
- 2. A layout with the possibility of 4 IPs is being considered
- → Would lead to total integrated luminosity x 1.7, energy consumption per event reduced accordingly
- 3. e+e- \rightarrow H (E_{CM} = m_H) unique, not in the schedule so far, <u>must be after both Z and H.</u>
- 3. Transerse polarization → precision beam energy calibration at Z and W Longitudinal possible (for both beams) but not in CDR by choice

Physics at FCC-ee

1. HIGGS FACTORY

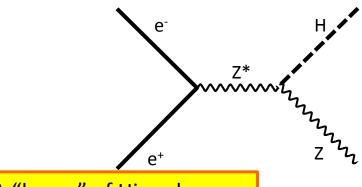
Higgs provides a very good reason why we need e+e- (or $\mu\mu$) collider

2. ELECTROWEAK PRECISION (10^{-3} today \rightarrow 10^{-5})

Z + WW + top required!

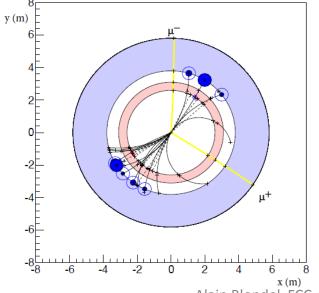
This is a test of the completeness of the SM existence of weakly interacting new particles

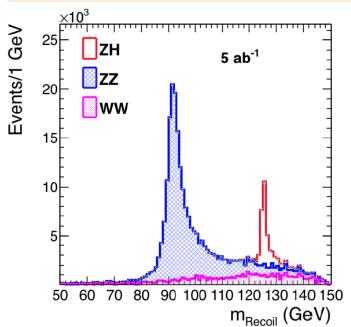
3. Z FACTORY (5 10¹² Z)


High statistics for Heavy Flavours and Search for Feebly Coupled Particles

The place for 'direct discovery'

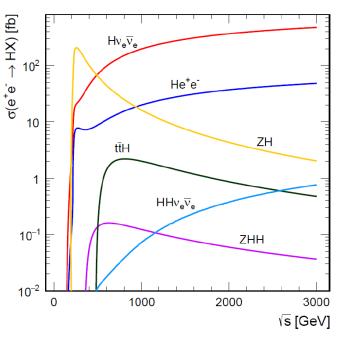
+ synergy and complementarity of FCC-ee hh and eh


e+e-: Z – tagging by missing mass



total rate $\propto g_{HZZ}^2$ ZZZ final state $\propto g_{HZZ}^4/\Gamma_H$ \rightarrow measure total width Γ_H

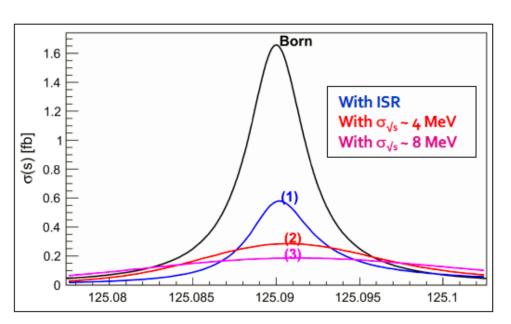
g_{Hzz} **to** ±**0.2%** and many other partial widths empty recoil = invisible width 'funny recoil' = exotic Higgs decay easy control below theshold

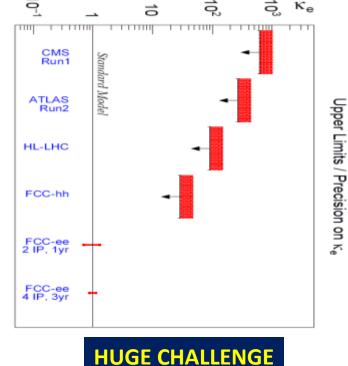


High energy Higgs factories: ILC500, CLIC3000, FCC-hh.

FCC-ee + FCC-hh is unbeatable!

Collider	ILC_{500}	ILC_{1000}	CLIC	FCC-INT	
$g_{\rm HZZ}$ (%)	$0.24 \ / \ 0.23$	$0.24 \ / \ 0.23$	$0.39 \; / \; 0.39$	0.17 / 0.16	
g_{HWW} (%)	$0.31 \ / \ 0.29$	$0.26\ /\ 0.24$	$0.38 \ / \ 0.38$	$0.20 \ / \ 0.19$	
g_{Hbb} (%)	$0.60 \ / \ 0.56$	$0.50\ /\ 0.47$	$0.53\ /\ 0.53$	0.48 / 0.48	
g_{Hcc} (%)	$1.3 \ / \ 1.2$	$0.91\ /\ 0.90$	$1.4 \ / \ 1.4$	$0.96 \ / \ 0.96$	e
g_{Hgg} (%)	$0.98 \; / \; 0.85$	$0.67 \ / \ 0.63$	$0.96 \ / \ 0.86$	$0.52 \ / \ 0.50$	
$g_{\mathrm{H}\tau\tau}$ (%)	$0.72 \ / \ 0.64$	$0.58 \ / \ 0.54$	$0.95 \; / \; 0.82$	$0.49 \ / \ 0.46$	
$g_{\mathrm{H}\mu\mu}$ (%)	$9.4 \ / \ 3.9$	$6.3 \ / \ 3.6$	$5.9 \; / \; 3.5$	$0.43 \ / \ 0.43$	
$g_{\rm H\gamma\gamma}$ (%)	$3.5 \ / \ 1.2$	$1.9 \ / \ 1.1$	$2.3 \ / \ 1.1$	$0.32 \ / \ 0.32$	
$g_{\mathrm{HZ}\gamma}$ (%)	- / 10 .	- / 10 .	7. / 5.7	0.71 / 0.70	> h
g_{Htt} (%)	$6.9 \ / \ 2.8$	$1.6 \ / \ 1.4$	$2.7 \; / \; 2.1$	$1.0 \ / \ 0.95$	
g _{HHH} (%)	27.	10.	9.	±2(stat)±~3(syst)	
Γ _H (%)	1.1	1.0	1.6	0.91	ee
BR _{inv} (%)	0.23	0.22	0.61	0.024	hh
BR_{EXO} (%)	1.4	1.4	2.4	1.0	ee

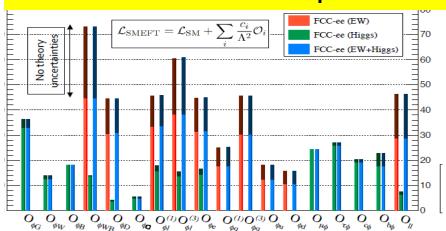

FCC-hh > 10^{10} H produced, + FCC-ee measurement of g_{HZZ} $\rightarrow g_{HHH}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, $g_{H\mu\mu}$, BR_{inv}


(*)see M. Selvaggi, 3d FCC physics workshop arxiv:2004.03505v1

10% precision in 2-5 years of FCC-hh running

Something unique!

HOGE


$e+e-\rightarrow H @ 125.xxx GeV requires$

- -- Higgs mass to be known to <5 MeV from 240 GeV run (CEPC group almost there)
- -- Huge luminosity
- -- monochromatization (opposite sign dispersion using magnetic lattice) to reduce σ_{ECM}
- -- continuous monitoring and adjustment of E_{CM} to MeV precision (transv. Polar.)
- -- an extremely sensitive event selection against backgrounds
- -- a generous lab director to spend 3 years doing this and neutrino counting

D. d'Enterria wednesday

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
m _z (keV)	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({\rm m_Z^2})(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
$R_{\ell}^{Z} (\times 10^{3})$	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$ $\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_{\rm b} \ (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
				stat. extrapol. from SLD
$A_{FB}^{b}, 0 (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
,				from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	τ polarization asymmetry
				τ decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
τ mass (MeV)	1776.86 ± 0.12	0.004	0.04	momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
m _W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{\rm W}~({ m MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({\rm m_W^2})(\times 10^4)$ $N_{\nu}(\times 10^3)$	1170 ± 420	3	small	from R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From tt threshold scan
				QCD errors dominate
$\Gamma_{\text{top}} (\text{MeV/c}^2)$	1410 ± 190	45	small	From t t threshold scan
				QCD errors dominate
$\lambda_{\mathrm{top}}/\lambda_{\mathrm{top}}^{\mathrm{SM}}$	1.2 ± 0.3	0.10	small	From t t threshold scan
				QCD errors dominate
ttZ couplings	$\pm~30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365 \mathrm{GeV}$ run

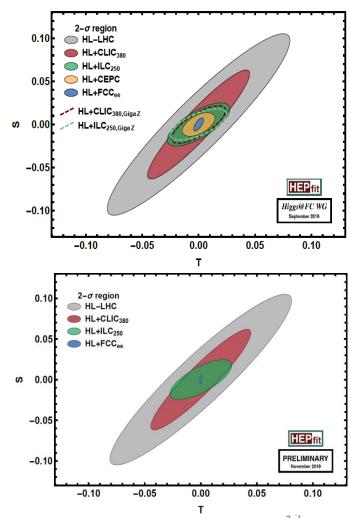
Precision EW measurements: is the SM complete?

- -^- EFT D6 operators (some assumptions)
- -^- Higgs and EWPOs are complementary
- -^- top quark mass and couplings essential! (the 100km circumference is optimal for this)
- <-- systematics are preliminary (aim at reducing to systematics)
- <-- tau, b, and c observables still to be added
- complemented by high energy FCC bb

<-- complemented by high energy FCC-hh</p>
Theory work is critical and initiated 1809.01830

Electroweak Physics

Highest luminosities at 91, 160 and 350 GeV Transverse pol. at 91 and 160 GeV \rightarrow Ecm calibration m_z (100 keV) Γ_z (25 keV), m_W (<500 keV), m_{top} (20 MeV) $\alpha_{\rm OED}$ (m_z) (3.10⁻⁵ rel) and sin² $\theta_{\rm w}$ (3.10⁻⁶ abs)

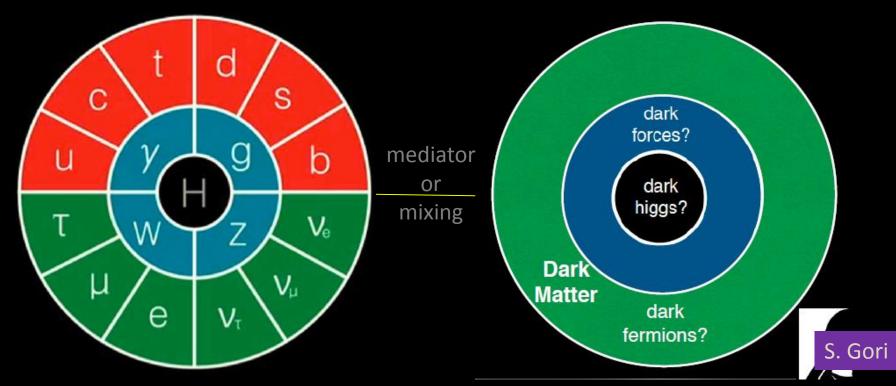

Complete set of EW observables can be measured Precision unique to FCC-ee + new physics sensitivity

→ a lot more potential to exploit requires dedicated detector design

Can be seen on LEP, LHC etc...

A common error of many 'studies' of the past was to <u>underestimate</u> how well a group of dedicated (and well prepared) physicists can deconstruct a systematic error problem to the precision level of statistics.

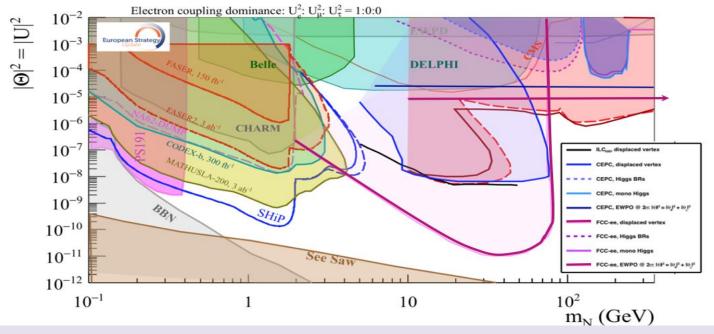
Use statistical error as target!


s and plans

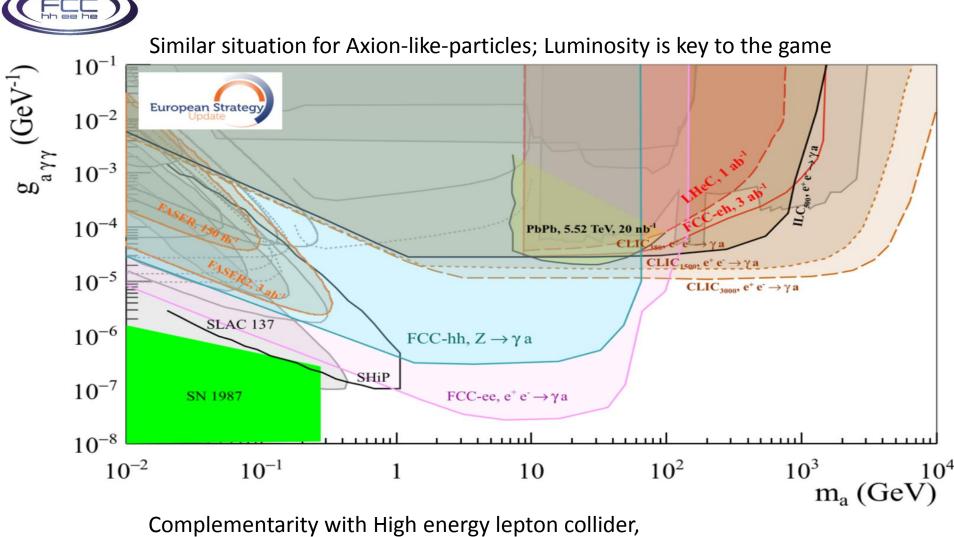
17

Dark Sector at Z factory

With the Higgs discovery SM works perfectly, yet we need new physics to explain the baryon asymmetry of the Universe, the dark matter etc... without interfering with SM rad. corr.



Dark photons, axion like particles, sterile neutrinos, all <u>feebly coupled</u> to SM particles


This picture is relevant to Neutrino, Dark sectors and High Energy Frontiers.

FCC-ee (Z) compared to the other machines for right-handed (sterile) neutrinos

How close can we get to the 'see-saw limit'?

-- the purple line shows the reach for observing **heavy neutrino decays** (here for 10^{12} Z), -- the horizontal line represents the sensitivity to **mixing of neutrinos** to the dark sector, using EWPOs (G_F vs $\sin^2\theta_W^{eff}$ and m_Z , m_W , tau decays) which extends sensitivity to 10^{-5} mixing all the way to very high energies (60 TeV at least).

More on TeraZ

The Flavour Factory

Progress in flavour physics wrt SuperKEKb/BELLEII requires > 10¹¹ b pair events, FCC-ee(Z): will provide ~10¹² b pairs. "Want at least 5 10¹² Z..."

- -- precision of CKM matrix elements
- -- Push forward searches for FCNC, CP violation and mixing
- -- Study rare penguin EW transitions such as b \rightarrow s τ + τ -, spectroscopy (produce b-baryons, B_s...)
- -- Test lepton universality with $10^{11} \tau$ decays (with τ lifetime, mass, BRs) at 10^{-5} level, LFV to 10^{-10}
- -- all very important to constrain / (provide hints of) new BSM physics.

need special detectors (PID); a story to be written!

The 3.5×10^{12} hadronic Z decay also provide precious input for QCD studies

High-precision measurement of $\alpha s(mz)$ with R ℓ in Z and W decay, jet rates, τ decays, etc. : 10 ⁻⁻³ \rightarrow 10 ⁻⁻⁴ huge \sqrt{s} lever-arm between 30 GeV and 1 TeV (FCC vs ILC), fragmentation, baryon production

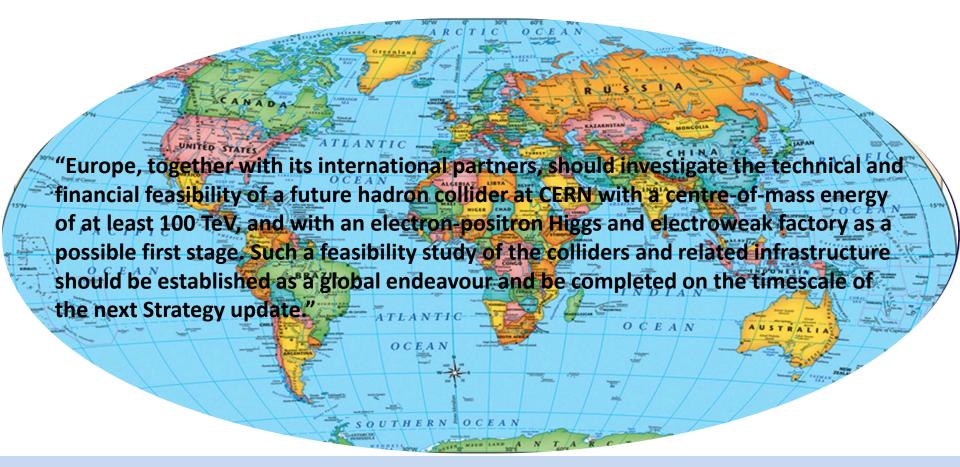
Testing running of αs to excellent precision

FCC-ee discovery potential and Highlights

Today we do not know how nature will surprise us. A few things that FCC-ee could discover:

EXPLORE 10-100 TeV energy scale (and beyond) with Precision Measurements

-- ~20-100 fold improved precision on many EW quantities (equiv. to factor 5-10 in mass) $m_{z_{,}} m_{w}$, m_{top} , $\sin^2\theta_w^{eff}$, R_b , α_{QED} (m_z) α_s ($m_z m_w m_\tau$), Higgs and top quark couplings model independent «fixed candle» for Higgs measurements, ee-H coupling.


DISCOVER a violation of flavour conservation or universality and unitarity of PMNS @10⁻⁵

- -- ex FCNC (Z --> $\mu\tau$, eτ) in 5 10¹² Z decays and τ BR in 2 10¹¹ Z $\rightarrow \tau\tau$ + flavour physics (10¹² bb events) (B \rightarrow s $\tau\tau$ etc..)
- DISCOVER dark matter as «invisible decay» of H or Z (or in LHC loopholes)
- DISCOVER very weakly coupled particle in 5-100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons, ALPS, etc...
- + and many opportunities in e.g. QCD ($\alpha_s @ 10^{-4}$, fragementations, H \rightarrow gg) etc....

NB Not only a "Higgs Factory"! "Z factory" and "top" are important for 'discovery potential'

Our marching orders from ESPP 2020:

Every word and character counts: feasibility of the colliders (ee and hh) and related infrastructure.

-- FCC is the highest priority for Europe and its international partners

IMPORTANT MILESTONES AND EVENTS

- -- reach out to all 'European and International Partners'
- -- complete organization of physics conveners within the next two months
 - -- nominations and volunteers welcome (contact AB and PJ)
- -- completion of first case study(es) in spring 2021 → detector requirements
- -- decide on FCC Layout (compatible with 4 IRs or not) by summer 2021
- -- FCC week in Mai-June 2021 (hopefully in person!) then annual event.
- -- FCC-IS Physics Workshop in Winter 2022 in Liverpool
- -- FCC-IS Physics Workshop in Winter 2023 in Poland
- -- FCC-IS Physics Workshop in Winter 2024 in France
- -- delivery of Physics and Experiments CDR ++ → END 2024
 - -- to serve as support for experimental proto-collaborations → EOI/LOIs for next ESPP

FCC PE&D

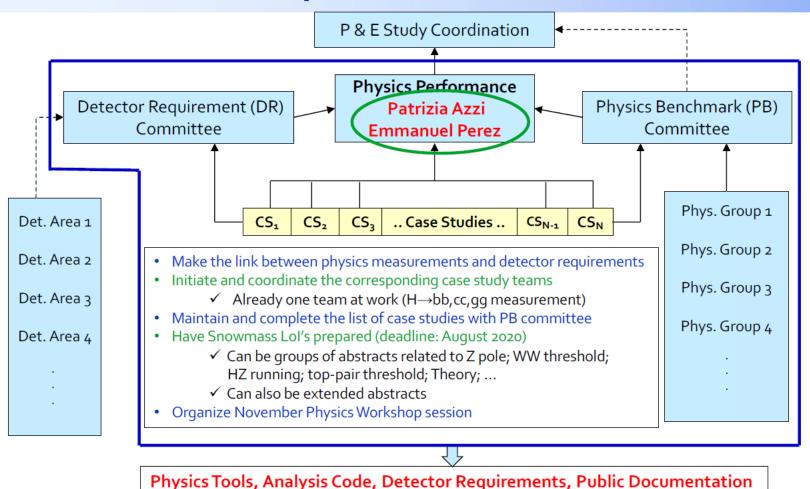
Bottom-up actions to widen the community support

"The greatest remaining challenge is the creation of a world-wide consortium of scientific contributors who reliably commit resources to the development and preparation of the FCC-ee science project from 2020 onwards"

(from FCC 'lepton collider' submission to ESPP)

- 1. Building a network of national contacts in Europe and international partners
- 2. CERN will put in place dedicated effort in experimental and theoretical physics
- 3. Restart physics study from Physics Performance effort ... more to come!

Physics Performance effort & conveners


The FCC-ee PE&D SG approved a proposal for a Physics Performance effort

Patrizia Azzi and Emmanuel Perez have agreed to serve as coordinators

operation (see next slide)

- 1. Physics working groups (conveners) -> establish list of BENCHMARK MEASUREMENTS
 - -- each can correspond to several case studies
 - -- group case studies from different measurements for efficiency/consistency
- 2. Case study teams establish DETECTOR REQUIREMENTS for optimizing measurement, and in particular <u>matching exp. systematics with the expected statistical precision.</u>
 - -- one team well advanced since July: c vs b/g jets in Higgs (and Z) decays
 - -- several others started, monthly meetings
- 3. This requires simulations of detector setup (fast sim or full sim as appropriate) with help/guidance from detector experts
- 4. Working towards a first complete case study analysed by spring 2021

Hot News: Physics Performance coordinators

Alain Blondel, FCC-ee PE&D; goals and plans Physics Performance Group Proposal

Notable sessions during the workshop

A fantastic program of phenomenology

In the PE&D:

Tuesday 11:00 Presentation of Physics Performance/Detector requirements/Software ("joining the study")

13:30 Joint session with accelerator: MDI (also Wednesday pm)

15:30 ECFA detector R&D road map/BELLEII/CEPC/AIDAInnovation

T <u>17h15 Round table discussion (will not be recorded)</u>

Wednesday pm -Thursday parallel sessions on detectors Calo/PID/TDAQ/VTX/Tracker

Thursday plenary 17:15 'Draw me a detector' session

Joint sessions exp-Pheno Wednesday & Friday morning

+ Physics performance sessions in parallel with phenomenology afterwards.

Summaries on Friday afternoon + next steps and discussion end around 16:00.