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Dipole Radiation

From previous lecture, total energy radiated per unit frequency is given by:
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Flux:

➢ Scales linearly with beam current
➢ Spectrum scales with critical frequency
➢ Fixed by design of storage ring

What if we want to change it?

𝜔𝑐 =
3𝑐𝛾3

2𝜌



Wavelength Shifter (3-pole wiggler)

In order to change the spectrum at fixed electron energy, we need to change the critical
frequency via the bend radius (i.e. the magnetic field)

𝜔𝑐 =
3𝑐𝛾3

2𝜌
∝ 𝐵𝑑𝑖𝑝𝑜𝑙𝑒

It is placed in the ring in an existing straight-section as a chicane => ‘Insertion device’

The electron beam enters and exits on-axis

𝜔𝑐 =
3𝑐𝛾3

2𝜌Radiation at centre of dipole is parallel to
central electron beam trajectory

Huge gain in flux at 
short wavelengths

Insertion 
straight

3-pole 
wiggler

Before After



Insertion Devices

Wavelength shifters allow the critical frequency to be controlled, but the observer still only
receives light from one part of the arc.

Could put several wavelength shifters in a single straight; the flux would increase linearly
with the number of devices.

A more efficient use of space is to place a single device in the ring that causes the electron
beam to oscillate many times.

Single dipole ‘Multipole Wiggler’‘Undulator’

The radiation sweeps 
out a single arc

The oscillation amplitude is 
small with respect to the 
radiation opening angle, giving 
rise to interference effects

The oscillation amplitude is 
large with respect to the 
radiation opening angle, 
producing a broad spectrum



Trajectory of Motion

In order to understand the properties of the radiation emitted by an insertion device, we
have to first calculate the electron beam trajectory. We consider a planar device with mid-
plane symmetry. The magnetic field is vertical, with sinusoidal variation along the device:

𝐵𝑦 = 𝐵0 sin(𝑘𝑢𝑧) , 𝑘𝑢 =
2𝜋

𝜆𝑢

Considering the Lorentz force 𝐅 = 𝛾𝑚𝑒
𝑑𝐯

𝑑𝑡
= 𝑒(𝐄 + 𝐯 × 𝐁) and relativistic energies

(𝑣𝑧~𝑐 ≫ 𝑣𝑥, 𝑣𝑦), the equation of motion in the horizontal plane is:
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Trajectory of Motion

ሷ𝑥(𝑧) = −
𝑒

𝛾𝑚𝑒𝑐
𝐵0 sin(𝑘𝑢𝑧)

The transverse velocity is simply found by integration:

ሶ𝑥(𝑧) =
𝑒𝐵0
𝛾𝑚𝑒𝑐

cos(𝑘𝑢𝑧)

𝑘𝑢
=
𝐾

𝛾
cos(𝑘𝑢𝑧) , 𝐾 =

𝑒𝐵0𝜆𝑢
2𝜋𝑚𝑒𝑐

where we have defined the dimensionless undulator parameter K.

To get the horizontal position, we integrate a second time to get

𝑥 𝑧 =
𝐾

𝛾𝑘𝑢
sin 𝑘𝑢𝑧

Or in the time domain,

𝑥 𝑡 =
𝐾

𝛾𝑘𝑢
sin 𝜔𝑢𝑡

where we have defined 𝜔𝑢 = 𝛽𝑧𝑐𝑘𝑢 and used 𝑧 ≈ 𝛽𝑧𝑐𝑡



Trajectory of Motion

Given the total velocity of the particle is constant, the horizontal oscillations cause the
velocity in the longitudinal plane to vary, where

𝛽2 = 𝛽𝑥
2 + 𝛽𝑧

2

Substituting 𝛽𝑥 = ሶ𝑥(𝑧) =
𝐾

𝛾
cos(𝑘𝑢𝑧) and using the identity 2 cos2 𝑎 = 1 + cos 2𝑎,

𝛽𝑧 ≈ 𝛽2 1 −
𝐾2

4𝛽2𝛾2
−

𝐾2

4𝛽2𝛾2
cos(2𝑘𝑢𝑧)

the average velocity in the longitudinal plane is therefore

𝛽𝑧 ≈ 𝛽2 1 −
𝐾2

4𝛽2𝛾2

and we can write

ሶ𝑧 = 𝛽𝑧 −
𝐾2

4𝛾2
cos 2𝑘𝑢𝑧

And after integration and moving to the time domain we have

𝑥 𝑡 =
𝐾

𝛾𝑘𝑢
sin 𝜔𝑢𝑡 𝑧 𝑡 = 𝛽𝑧𝑐𝑡 −

𝐾2

8𝛾2𝑘𝑢
sin 2𝜔𝑢𝑡



Trajectory of Motion

𝑥 𝑡 =
𝐾

𝛾𝑘𝑢
sin 𝜔𝑢𝑡 𝑧 𝑡 = 𝛽𝑧𝑐𝑡 −

𝐾2

8𝛾2𝑘𝑢
sin 2𝜔𝑢𝑡

The actual amplitude of motion can be very small. If we take for example a 6 GeV electron
beam, and an undulator with period length 𝜆𝑢= 50 mm and 𝐾=1, then then maximum
amplitude of oscillation is only 0.7 μm.

The maximum angle is similarly small. In this example, 𝜃𝑚𝑎𝑥 is 85 μrad.

𝜃𝑚𝑎𝑥 =
𝑑𝑥

𝑑𝑧
𝑚𝑎𝑥

=
𝐾

𝛾



Trajectory of Motion

𝑥 𝑡 =
𝐾

𝛾𝑘𝑢
sin 𝜔𝑢𝑡 𝑧 𝑡 = 𝛽𝑧𝑐𝑡 −

𝐾2

8𝛾2𝑘𝑢
sin 2𝜔𝑢𝑡

If we view the particle motion in a reference frame that moves with the average velocity of
the particle, the amplitude of the motion appears as a figure-of-eight pattern.

At small K values, the motion is approximately a simple harmonic oscillation in the
horizontal plane and an emission spectrum consisting of a single harmonic.

As K increases, the figure-of-eight pattern becomes more pronounced, leading to
increased emission at higher harmonics.



Radiation Spectrum: Qualitative Treatment 

From the first lecture, we have seen that the natural opening angle of synchrotron
radiation is 𝜃~1/𝛾. We have also seen that the maximum angle of deflection for the
electron beam when passing through an insertion device is 𝜃𝑚𝑎𝑥 = 𝐾/𝛾. This allows us to
identify two regimes:

𝑲 ≲ 𝟏: The angular deflection is less than
the opening angle of the radiation. The
observer see the radiation continuously
along the length of the device. Such devices
are commonly described as undulators.

𝑲 ≳ 𝟏: The angular deflection is larger than
the opening angle of the radiation. The
observer only sees flashes of radiation as the
electron beam sweeps from side to side.
These devices are usually termed wigglers.

x

x

z

z

𝜆𝑢

𝜃 = 𝐾/𝛾

𝜃 = 𝐾/𝛾



Radiation Spectrum: Qualitative Treatment 

𝑲 ≪ 𝟏

𝑲 ≈ 𝟏

𝑲 ≫ 𝟏



Resonant wavelength 

The properties of the radiation emitted by an electron travelling through an insertion
device can be understood as interference of the wavefronts emitted by the same electron
at different points along the axis of the device.

The time taken for the electron to travel from point A to point B is 𝜏 =
𝜆𝑢

𝛽𝑧𝑐
.

In the same time, the radiation emitted at point A will have travelled a distance 𝑠 = 𝑐𝜏.
That is, the radiation will have advanced a distance d ahead of the electron

𝑑 = 𝑐𝜏 − 𝜆𝑢 cos 𝜃 =
𝜆𝑢

𝛽𝑧
− 𝜆𝑢 cos 𝜃

For constructive interference, the distance d must be an integer number of wavelengths

𝑛𝜆𝑟 = 𝜆𝑢
1

𝛽𝑧
− cos 𝜃

x

z

𝜆𝑢
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Resonant wavelength 

From the analysis of the particle motion in the insertion device, we have

𝛽𝑧 ≈ 𝛽2 1 −
𝐾2

4𝛽2𝛾2

So

𝛽𝑧 ≈ 1 −
1

2𝛾2
−
𝐾2

4𝛾2
≈ 1 −

1

2𝛾2
1 +

𝐾2

2

Substituting back into the resonance condition, and making use of the small angle
approximation cos 𝜃 ≈ 1 − 𝜃2/2 we now have

𝑛𝜆𝑟 = 𝜆𝑢 1 +
1

2𝛾2
1 +

𝐾2

2
− 1 −

𝜃2

2

𝜆𝑟 =
𝜆𝑢
2𝑛𝛾2

1 +
𝐾2

2
+ 𝜃2𝛾2

This gives the condition for constructive interference in an insertion device.



Resonant wavelength 

𝜆𝑟 =
𝜆𝑢
2𝑛𝛾2

1 +
𝐾2

2
+ 𝜃2𝛾2

Properties of radiation emitted by insertion devices:

• The fundamental wavelength of the radiation is shorter than the period of the device by
a factor 2𝛾2. To put this in context, a 3 GeV electron beam passing through an insertion
device with period of 25 mm would emit radiation in the region ~3.6 Å

• The radiation wavelength can be changed either by changing the energy of the
electrons (via the 𝛾2 term), or by changing the magnetic field of the device (via 𝐾)

• The resonant wavelength increases with increasing observation angle



Radiation from a Planar Undulator

From previous lecture, the energy radiated by an electron, per unit frequency, per unit
solid angle is found from the Fourier transform of the electric field as seen by the observer

𝑑2𝑊

𝑑Ω𝑑𝜔
=

2

2𝜋𝜇0𝑐
න
−∞

∞

𝑟𝐄 𝑡 𝑒𝑖𝜔𝑡𝑑𝑡

2

where the electric field is found for the far-field (i.e. considering only the acceleration
term)

𝐄 𝑡 =
𝑒

4𝜋𝜀0𝑐

𝐧 × [ 𝐧 − 𝛃 × ሶ𝛃]

𝑟 1 − 𝐧 ∙ 𝛃 3
𝑟𝑒𝑡

The subscript ‘ret’ means the field is related to the electron acceleration at the retarded
time of emission, not the time of observation.

Substituting the electric field into the above expression, and integrating by parts to
simplify leads to the expression

𝑑2𝑊

𝑑Ω𝑑𝜔
=

𝑒2

16𝜋3𝜖0𝑐
𝜔2 න

−∞

∞

𝐧 × (𝐧 × 𝛃) 𝑒𝑖𝜔 𝑡′+
𝑟 𝑡′

𝑐 𝑑𝑡′

2



Radiation from a Planar Undulator

In the case of a array of magnets consisting of 𝑁 periods (as is the case of an undulator),
we can split the integral up into an integration over one period of the device, multiplied by
a series of terms containing the phase information, i.e.

𝑑2𝑊

𝑑Ω𝑑𝜔
=

𝑒2

16𝜋3𝜖0𝑐
𝜔2 න

−𝜆𝑢/2𝛽𝑧𝑐

𝜆𝑢/2𝛽𝑧𝑐

𝐧 × (𝐧 × 𝛃) 𝑒𝑖𝜔 𝑡′+
𝑟 𝑡′

𝑐 𝑑𝑡′

2

× 1 + 𝑒𝑖𝜔𝑑/𝑐 + 𝑒𝑖2𝜔𝑑/𝑐 +⋯+ 𝑒𝑖(𝑁−1)𝜔𝑑/𝑐
2

Here, 𝑑 is the distance between successive wavefronts found when calculating the
resonant wavelength of an undulator

𝑑 =
𝜆𝑢

𝛽𝑧
− 𝜆𝑢 cos 𝜃

The distance between successive wavefronts can also be re-expressed in terms of the
fundament frequency

𝑑 = 𝜆1 =
2𝜋𝑐

𝜔1



Radiation from a Planar Undulator

The series of phase factors in the radiation integral can now be simplified using the identity

1 + 𝑒𝑖𝛿 +⋯+ 𝑒𝑖 𝑁−1 𝛿 2
=
sin2𝑁𝛿/2

sin2 𝛿/2

giving the so-called ‘grating function’, in analogy to diffraction gratings

1 + 𝑒𝑖𝜔𝑑/𝑐 + 𝑒𝑖2𝜔𝑑/𝑐 +⋯+ 𝑒𝑖(𝑁−1)𝜔𝑑/𝑐
2
=
sin2𝑁𝜋𝜔/𝜔1

sin2 𝜋𝜔/𝜔1

The grating function represents the interference between successive periods, selecting a
narrow range of frequencies close to each harmonic (i.e. 𝑛 = 𝜔/𝜔1 = 1, 2, 3 . .).

𝑁 = 5



Radiation from a Planar Undulator

The next step is to investigate the shape of the function close to the harmonics. We start
by normalising the grating function to unit amplitude, and focussing on the region close to
each harmonic (Δ𝜔 = 𝜔 − 𝑛𝜔1) leads to the ‘line-shape function’

𝐿
𝑁Δ𝜔

𝜔1
=

1

𝑁2

sin2𝑁𝜋Δ𝜔/𝜔1

sin2 𝜋Δ𝜔/𝜔1

For large 𝑁 (≳ 10), the shape of the function becomes independent of the number of

periods. The full-width half maximum of this peak occurs at
NΔ𝜔

𝜔1
= ±0.5 , i.e. the

bandwidth of the nth harmonic 𝜔𝑛 = 𝑛𝜔1 is

Δ𝜔

𝜔𝑛
=

1

𝑛𝑁

which decreases with increasing harmonic and increasing number of periods.



Radiation from a Planar Undulator

The radiation integral can now be expressed in the form

𝑑2𝑊

𝑑Ω𝑑𝜔
=
𝑒2𝛾2𝑁2

4𝜋𝜖0𝑐
𝐹𝑛 𝐾, 𝜃, 𝜙 𝐿

𝑁Δ𝜔

𝜔1 𝜃

where

𝐹𝑛 𝐾, 𝜃, 𝜙 ∝ 𝜔2 න
−𝜆𝑢/2𝛽𝑧𝑐

𝜆𝑢/2𝛽𝑧𝑐

𝐧 × (𝐧 × 𝛃) 𝑒𝑖𝜔 𝑡′+
𝑟 𝑡′

𝑐 𝑑𝑡′

2

This integral can in general be solved numerically. However, analytic solutions also exist for
some trajectories such as purely sinusoidal motion [1, 2]. In this case,

𝐹𝑛 𝐾, 𝜃, 𝜙 =
𝑛2

𝐴2
𝐴𝑥, 𝐴𝑦

2

𝐴 = 1 + 𝐾2/2 + 𝛾2𝜃2

𝐴𝑥 = 2𝛾𝜃 cos 𝜙 𝑆0 + 𝐾 𝑆1 + 𝑆−1 , 𝐴𝑦 = 2𝛾𝜃 sin(𝜙) 𝑆0

𝑆𝑞 = 

𝑝=−∞

∞

𝐽𝑝 𝑌 𝐽𝑛+2𝑝+𝑞 𝑋

𝑋 = 2𝑛𝛾𝜃𝐾 cos 𝜙 /𝐴, 𝑌 = 𝑛𝐾2/4𝐴

𝜎-mode (H-polarisation)

𝜋-mode (V-polarisation)



Relative Angular Flux Density  



Radiation from a Planar Undulator

On axis, the expression can be simplified:

𝐹𝑛 𝐾, 0,0 = 𝐹𝑛 𝐾 =
𝑛2𝐾2

1 + 𝐾2/2 2 𝐽
𝑛+

1
2
𝑍 − 𝐽

𝑛−
1
2
𝑍

2

with

𝑍 =
𝑛𝐾2

4(1 + 𝐾2/2)

This equation has the property that only odd harmonics are non-zero (no even harmonics
observed on-axis). As K increases, the higher harmonics become stronger as a result of the
longitudinal modulation.



Spectrum for a real undulator

λu = 17.6 mm
N = 111
K = 1.88

The photon energy is varied by changing the 𝐾 parameter (the B-field)

High K

Low K

𝐾 =
𝑒𝐵0𝜆𝑢
2𝜋𝑚𝑒𝑐



Spectrum for a wiggler

Looks like an undulator
at long wavelengths

Looks like a 
dipole at short 
wavelengths

Critical energy



Summary of properties

Undulators
• 𝐾 ≲ 1 (weaker field, shorter period)
• Amplitude of motion less than opening angle of radiation
• Observer sees light from the whole device
• Discrete lines appear in the spectrum

• Power scales with 𝑁𝑝𝑒𝑟𝑖𝑜𝑑
2

• Line width shrinks with 𝑛𝑁𝑝𝑒𝑟𝑖𝑜𝑑

Multipole Wigglers
• 𝐾 ≳ 1
• Amplitude of motion greater than opening angle of radiation
• Observer misses part of the radiation as the beam sweeps from side to side
• Continuous spectrum at short wavelengths (more like a dipole)
• Power scales with 2𝑁𝑝𝑒𝑟𝑖𝑜𝑑
• Spectrum looks like an undulator at long wavelengths



Types of Undulators and Wigglers

Electromagnetic undulators: The field is generated by current-carrying coils. They may
have iron poles

Permanent magnet undulators: The field is generated by permanent magnets such as
Samarium Cobolt (SmCo; 1T) or Neodymium Iron Boron (NdFeB; 1.4T). They may also have
iron poles (hybrid undulators)

APPLE-II undulators: Arrays of permanent magnets which can slide longitudinally in order
to change the polarisation of the magnetic field to generate horizontal, vertical or circularly
polarised radiation

In-vacuum undulators: permanent magnet arrays that sit within the vacuum pipe. This
allows the gap to be closed to small values (< 5 mm!) and hence high fields



Electromagnetic Undulators

• Out of vacuum
• Field controlled by varying the current in the coils
• Possible to generate variable polarisations
• Space for coils becomes an issue for short periods and high fields
• Generally used only for long period devices

HU64 at 
Soleil



In-vacuum Undulators

• Permanent magnet array
• Field aligned vertically
• Change field by varying the gap
• Period length typically 20-30 mm

IVU at 
Diamond



Advanced Planar Polarised Light Emitter Undulators (APPLE-II)

• Helical field controlled by adjusting axis phase
• Typically out of vacuum
• Gap controls field strength
• Generate light with arbitrary polarisation
• Period length typically 50-150 mm

HU64 at 
Diamond



Hybrid Devices

• Permanent magnets with 
steel poles

• Allow higher fields to be 
reached

• Field strength again 
controlled via gap

• Both undulator and wiggler 
configurations



Cryogenic Permanent Magnet Undulators (CPMU)

• Permanent magnet array cryogenically cooled (e.g. NdFeB cooled to 148 K)
• Hybrid configuration to get higher fields with shorter periods (𝜆𝑢 ~15-20 mm)
• Exploits field enhancement in magnetic materials at low temperature
• Cooled with liquid nitrogen



Super-conducting Wigglers

• Used when very high field is 
required (3-10 T)

• Need cryogenic system to 
keep the coil super-conducting

• Nb3Sn and NbTi wires

Example at Diamond
• SC-MPW60
• 3.5 T, Cooled to 4 K, 24 periods 
• Fixed gap 10 mm
• 𝐾 = 21

Neutral 
iron pole

Active iron 
pole

Budker Institute

SC-MPW at 
Diamond



Trajectory through an ID

We want to ensure that the electron beam enters and exits the device on-axis. To do this
requires a special configuration of poles.

One solution is to have poles of one-half strength at each end. Another solution requires

the ratio
𝐵0

4
,
3𝐵0

4
, 𝐵0, … , 𝐵0,

3𝐵0

4
,
𝐵0

4
, and has the advantage that the average displacement

through the device is zero.



Trajectory through an ID

In general, the magnetic fields will not be perfect, and the electron beam will exit the
device with an overall change in displacement and angle. Assuming the real field profile is
known, these can be found by direct integration of the equation of motion:

ሷ𝑥 =
𝑒

𝛾𝑚𝑒𝑐
𝐵𝑦(𝑠)

To minimise the impact of the device, we need to ensure the first and second field
integrals are zero:

𝐿/2−
𝐿/2

𝐵𝑦(𝑠)𝑑𝑠 = 0 (angle)

𝐿/2−
𝐿/2

𝐿/2−
𝑠

𝐵𝑦(𝑠′)𝑑𝑠′𝑑𝑠 = 0 (position)

This can be achieved through careful shimming of the device, and any final corrections can
be applied using dipole trim coils at the entrance and exit.



Focussing effects

So far we have only considered what happens to electrons if they are travelling through
the centre of the device and assumed an idealised purely vertical magnetic field. In fact, in
order to satisfy Maxwell’s equations, real insertion devices of finite width must have
horizontal and longitudinal components as well. However, assuming the magnet pole
width is large compared to the oscillation amplitude, the variation in the horizontal plane
can in general be neglected.

In this situation, an improved approximation for the magnetic field for a planar device is:

𝐵𝑥 𝑥, 𝑦, 𝑠 = 0
𝐵𝑦 𝑥, 𝑦, 𝑠 = 𝐵0 cosh(𝑘𝑢𝑦) cos(𝑘𝑢𝑠)

𝐵𝑠 𝑥, 𝑦, 𝑠 = −𝐵0 sinh(𝑘𝑢𝑦) sin(𝑘𝑢𝑠)

On axis, this reduces to the previous expression 𝐵𝑦 0,0, 𝑠 = 𝐵0 cos(𝑘𝑢𝑠).

The introduction of a longitudinal field
component leads to a focussing effect in
the vertical plane.

NN N

N N

S S

S S S



Focussing effects

At the point half way between the poles, the longitudinal field component is at its
strongest. This is also the location where the horizontal velocity is at its maximum, giving
rise to a vertical force (Lorentz) acting towards the mid-plane.

The equations of motion are now

ሷ𝑥 =
𝑒

𝛾𝑚𝑒𝑐
𝐵𝑦 − ሶ𝑦𝐵𝑠

ሷ𝑦 =
𝑒

𝛾𝑚𝑒𝑐
ሶ𝑥𝐵𝑠 − 𝐵𝑥

Close to the mid-plane we can write

𝐵𝑠 ≈
𝑑𝐵𝑠
𝑑𝑦

𝑦 =
𝑑𝐵𝑦

𝑑𝑠
𝑦

So, substitution into the above equations (with 𝐵𝑥 = 0 and ሶ𝑦 = 0) gives

ሷ𝑦 =
𝑒

𝛾𝑚𝑒𝑐

2

න𝐵𝑦𝑑𝑠
𝑑𝐵𝑦

𝑑𝑠
𝑦



Focussing effects

Comparing with Hill’s equation

ሷ𝑦 + 𝐾𝑦𝑦 = 0

We can identify the focussing term 𝐾𝑦 as

𝐾𝑦 =
𝑒

𝛾𝑚𝑒𝑐

2

න𝐵𝑦𝑑𝑠
𝑑𝐵𝑦

𝑑𝑠

Averaging over the length of the device and integrating by parts, this can be rewritten as

𝐾𝑦 =
𝑒

𝛾𝑚𝑒𝑐

2
𝐵𝑦

2𝑑𝑠

𝐿

Which for sinusoidal motion gives

𝐾𝑦 =
𝑒

𝛾𝑚𝑒𝑐

2
𝐵0
2

2
=

1

2𝜌0
2

An undulator acts as a focussing quadrupole in the vertical plane and as a drift in the
horizontal plane. The vertical focussing is second order in both energy and B-field.



Focussing effects

The vertical focussing from the undulator will clearly have an impact on the optics of the
storage ring [7].

1) An increase in the vertical tune:

Δ𝑄𝑦 =
𝐾𝑦𝐿𝑢 መ𝛽𝑦

4𝜋
1 +

𝐿𝑢
2

12 መ𝛽𝑦
2

2) A relative change in the beta-functions (beta-beat):

Δ𝛽𝑦

𝛽𝑦
= −

𝐾𝑦𝐿𝑢 መ𝛽𝑦

2 sin 2𝜋𝑄𝑦
1 −

𝐿𝑢
2

12 መ𝛽𝑦
2



Summary

Insertion devices are placed in electron storage rings to provide tuneable, high-brightness
sources of synchrotron radiation

Wavelength shifter: 3-pole device, high B-field to increase critical wavelength.

Undulator: 𝐾 ≲ 1; brightness scales with 𝑁𝑝𝑒𝑟𝑖𝑜𝑑
2 . Lines appear in spectrum.

Wiggler: 𝐾 ≳ 1; brightness scales with 2𝑁𝑝𝑒𝑟𝑖𝑜𝑑. Continuous spectrum.

Can produce linear, elliptical or circularly polarised light

Many designs exist (electro-magnet, permanent-magnet, super-conducting, cryo-cooled,
planar or helical, in-vacuum or out-of-vacuum, … ).

Selecting which one is most appropriate depends upon:
scientific requirements of the beamline
electron beam parameters
practical constraints

Insertion devices perturb the storage ring optics. Field quality must be very high, but even
so correction strategies may be required.
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