Partikeldagarna 2020

Radiative corrections for the decay $\Sigma^0 ightarrow \Lambda e^+ e^-$

Tomáš Husek Lund University

In collaboration with Stefan Leupold (*Uppsala U.*)

Uppsala (virtually) November 23, 2020 1 11 -

Swedish Research Council

Tomáš Husek (THEP, LU)

Radiative corrections for the decay $\Sigma^0 \to \Lambda e^+ e^-$

23/11/2020 1 / 16

ICE

Introduction

How are the building blocks distributed inside of the composite objects (nucleons)?

- electron-nucleon scattering
 - electromagnetic form factors
 → used to explore intrinsic structure of nucleons
 - low-energy quantities
 → electric charge, magnetic moment, electric and magnetic radii

Replacement of down quarks (of a nucleon/ Δ) by strange quark(s)?

- played role in revealing quarks as building blocks of nucleons and hadrons in general
- close relation among the intrinsic structures of hyperons and nucleons
 - hyperon electromagnetic and transition form factors contain complementary information to the nucleon (and $\Delta)$ ones

Tomáš Husek (THEP, LU)

23/11/2020 2 / 16

Experimental knowledge of hyperons rather limited

- electric charges and magnetic moments known
- unstable \rightarrow electron scattering rather difficult

Form factors

- high energies
 - e^+e^- scattering to hyperon + antihyperon \hookrightarrow both direct and transition form factors accessible
- low energies
 - Dalitz decay $Y \to Y' e^+ e^-$
 - possibly high statistics in future at FAIR (PANDA: $p\bar{p}$, HADES: pp)

Dalitz decays in baryon-octet sector?

Dalitz decay $\Sigma^0 \to \Lambda e^+ e^-$

- e^+e^- invariant mass only up to $M_\Sigma M_\Lambda \simeq 77\,{
 m MeV}$
- provides electric and magnetic transition form factors of $\Sigma^0 o \Lambda$ transition
- extracting transition radii challenging
 - high-precision measurement required
 - competing with QED radiative corrections

Predictions of electric and magnetic radii

- Kubis and Meissner, EPJC 18 (2001)
- Granados, Leupold and Perotti, EPJA 53 (2017)

 $\Sigma^0 \Lambda \gamma$ vertex: $\langle 0|j^\mu|\Sigma^0 \bar{\Lambda}
angle = e \bar{v}_{\Lambda}(\vec{p}_2) \, G^\mu(p_1 + p_2) \, u_{\Sigma}(\vec{p}_1),$ with

$$G^{\mu}(q) \equiv \left[\gamma^{\mu} - (M_{\Sigma} - M_{\Lambda})rac{q^{\mu}}{q^{2}}
ight]G_{1}(q^{2}) - rac{i\sigma^{\mu
u}q_{
u}}{M_{\Sigma} + M_{\Lambda}}G_{2}(q^{2})$$

Define magnetic and electric form factors

$$\begin{split} G_{\mathsf{M}}(q^2) &\equiv G_1(q^2) + G_2(q^2) \\ G_{\mathsf{E}}(q^2) &\equiv G_1(q^2) + \frac{q^2}{(M_{\Sigma} + M_{\Lambda})^2} G_2(q^2) = \frac{1}{6} \langle r_{\mathsf{E}}^2 \rangle q^2 + \mathcal{O}(q^4) \end{split}$$

Matrix element squared dominated by the magnetic part

$$\overline{|\mathcal{M}^{\mathsf{LO}}(x,y)|^2} \simeq 2e^4 |G_{\mathsf{M}}(\Delta_M^2 x)|^2 \frac{(1-x)}{x} \left(1+y^2+\frac{\nu^2}{x}\right)$$

$$x \equiv \frac{(p_{e^+} + p_{e^-})^2}{(M_{\Sigma^0} - M_{\Lambda})^2}, \quad y \equiv \frac{2 \, p_{\Sigma^0} \cdot (p_{e^+} - p_{e^-})}{\lambda^{\frac{1}{2}} (p_{\Sigma^0}^2, p_{\Lambda}^2, (p_{e^+} + p_{e^-})^2)}$$

Radiative corrections for the decay $\Sigma^0 \to \Lambda e^+ e^-$

Radiative corrections to the differential decay width in soft-photon approximation

- Sidhu and Smith, PRD 4 3344 (1971)
 - no hard-photon corrections, low-x region not covered
 - resulting corrections negative all over the Dalitz plot
 - \hookrightarrow total correction known to be positive

TH and Leupold, EPJC 80 (2020), arXiv:1911.02571

• inclusive radiative corrections beyond the soft-photon approximation

Low-energy expansion of the form factors:

$$\begin{split} & G_{\mathsf{M}}\big((k+q_1+q_2)^2\big) \simeq G_{\mathsf{M}}\big((q_1+q_2)^2\big) \bigg\{ 1 + \frac{1}{6} \langle r_{\mathsf{M}}^2 \rangle [2k \cdot (q_1+q_2)] \bigg\} \\ & G_{\mathsf{E}}\big((k+q_1+q_2)^2\big) \simeq G_{\mathsf{E}}\big((q_1+q_2)^2\big) \bigg\{ 1 + \frac{2k \cdot (q_1+q_2)}{(q_1+q_2)^2} \bigg\} \end{split}$$

Subsequently, integrate over the energy and emission angle of the bremsstrahlung photon

• radiative corrections for inclusive process

By loop-momenta-power counting, FFs required to regulate the UV region 1γ IR: UV convergence already achieved in the simplest case with constant FFs

• $G_{\mathsf{E}}(q^2) = G_{\mathsf{E}}(0) = 0$ and $G_{\mathsf{M}}(q^2) = G_{\mathsf{M}}(0) = \kappa$

$$G_1(q^2) = \kappa \frac{q^2}{q^2 - M_V^2}, \quad G_2(q^2) = -\kappa \frac{M_V^2}{q^2 - M_V^2}$$

Ansatz satisfying high-energy constraints

$$G_1(q^2) = \kappa \left(3 - \frac{M_V^2 \langle r_M^2 \rangle}{6}\right) \frac{q^2 M_V^4}{(q^2 - M_V^2)^3}, \quad G_2(q^2) = -\kappa \frac{M_V^6}{(q^2 - M_V^2)^3}$$

These contributions to the NLO decay width are found to be negligible

Results Corrections to two-fold differential decay width $\delta(x, y)$ given in %

х \ у	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.99	
0.01	2.49	2.43	2.30	2.16	2.02	1.85	1.63	1.32	0.80	-0.24	-8.33	Ī
0.02	2.65	2.59	2.47	2.32	2.16	1.97	1.72	1.37	0.80	-0.33	-6.00	
0.03	2.69	2.64	2.52	2.38	2.21	2.01	1.75	1.37	0.77	-0.42	-5.96	
0.04	2.68	2.64	2.53	2.39	2.22	2.01	1.74	1.35	0.73	-0.51	-6.08	
0.05	2.65	2.61	2.51	2.37	2.21	2.00	1.72	1.32	0.68	-0.59	-6.24	
0.06	2.61	2.57	2.48	2.35	2.19	1.98	1.70	1.29	0.63	-0.67	-6.41	
0.07	2.56	2.53	2.44	2.31	2.15	1.95	1.66	1.25	0.58	-0.75	-6.58	
0.08	2.50	2.47	2.39	2.27	2.12	1.91	1.63	1.21	0.53	-0.83	-6.75	
0.09	2.44	2.42	2.34	2.22	2.07	1.87	1.59	1.16	0.47	-0.90	-6.91	
0.10	2.38	2.35	2.28	2.17	2.03	1.83	1.54	1.12	0.42	-0.98	-7.07	
0.15	2.04	2.02	1.97	1.89	1.76	1.57	1.30	0.86	0.14	-1.35	-7.81	
0.20	1.67	1.66	1.63	1.56	1.45	1.29	1.02	0.58	-0.17	-1.71	-8.49	
0.25	1.29	1.28	1.26	1.21	1.12	0.97	0.71	0.28	-0.48	-2.09	-9.13	
0.30	0.89	0.89	0.88	0.84	0.77	0.64	0.39	-0.04	-0.82	-2.47	-9.76	
0.35	0.47	0.47	0.47	0.45	0.40	0.28	0.04	-0.39	-1.17	-2.88	-10.4	
0.40	0.03	0.03	0.04	0.04	0.00	-0.11	-0.34	-0.76	-1.56	-3.30	-11.0	
0.45	-0.44	-0.43	-0.42	-0.41	-0.43	-0.53	-0.74	-1.16	-1.97	-3.75	-11.6	
0.50	-0.94	-0.93	-0.90	-0.88	-0.89	-0.97	-1.18	-1.59	-2.41	-4.24	-12.3	
0.55	-1.48	-1.47	-1.43	-1.40	-1.40	-1.47	-1.66	-2.07	-2.90	-4.77	-12.9	
0.60	-2.07	-2.06	-2.02	-1.97	-1.95	-2.01	-2.19	-2.60	-3.44	-5.35	-13.6	
0.65	-2.73	-2.71	-2.66	-2.61	-2.58	-2.62	-2.79	-3.20	-4.05	-6.00	-14.4	
0.70	-3.48	-3.46	-3.40	-3.33	-3.29	-3.31	-3.48	-3.89	-4.75	-6.73	-15.3	
0.75	-4.34	-4.32	-4.25	-4.17	-4.11	-4.13	-4.29	-4.69	-5.57	-7.59	-16.2	
0.80	-5.38	-5.35	-5.28	-5.19	-5.11	-5.12	-5.27	-5.67	-6.56	-8.62	-17.4	
0.85	-6.69	-6.66	-6.58	-6.47	-6.39	-6.38	-6.52	-6.93	-7.83	-9.92	-18.8	
0.90	-8.50	-8.47	-8.38	-8.26	-8.16	-8.14	-8.27	-8.68	-9.60	-11.7	-20.7	
0.95	-11.5	-11.5	-11.4	-11.3	-11.1	-11.1	-11.2	-11.7	-12.6	-14.7	-23.8	
0 00	-18 4	-18 /	-18.2	-18 1	-18.0	-170	-18 1	-185	-10 /	-21.6	-30.7	

Results Corrections to one-fold differential decay width

Tomáš Husek (THEP, LU)

Radiative corrections for the decay $\Sigma^0
ightarrow \Lambda e^+ e^-$

23/11/2020 11 / 16

Integrate over the Dalitz plot (values from Kubis and Meissner, EPJC 18 (2001))

$$R \equiv \frac{\Gamma(\Sigma^0 \to \Lambda e^+ e^-)}{\Gamma(\Sigma^0 \to \Lambda \gamma)} = 5.541(2) \times 10^{-3}$$

 \hookrightarrow neglect electric form factor \rightarrow expansion in magnetic form-factor slope $a \equiv \frac{1}{6} \langle r_M^2 \rangle \Delta_M^2$

$$R = R_0 + aR_1 + \mathcal{O}(a^2)$$

+ higher-order corrections as additional uncertainty

 $R = [5.530(3) + 0.626(2)a] \times 10^{-3}$

↔ consistent with the NLO result in Sidhu and Smith, PRD 4 3344 (1971)

$$R_{S\&S} = (5.532 + 0.627a) \times 10^{-3} [\approx 5.544 \times 10^{-3}]$$

\downarrow

Using present values for physical constants (taking NLO expressions from Sidhu and Smith (1971))

 $R_{S\&S}^{\text{new}} = (5.52975 + 0.62640a) \times 10^{-3}$

Compares well with our result $R = (5.52974 + 0.62640a) \times 10^{-3}$ (only electron loop in VP)

	LO	virt	BS _C	BS _D	total
$\begin{array}{c} R_0 [10^{-3}] \\ R_1 [10^{-3}] \end{array}$	$5.4838 \\ 0.6189$	$-0.01667 \\ -0.02006$	$-0.06443 \\ 0.00010$	$\begin{array}{c} 0.12713 \\ 0.02747 \end{array}$	$5.5298 \\ 0.6264$
δ [%]		-0.310	-1.173	2.322	0.839

From the constraint $\mathcal{B}(\Sigma^0 \to \Lambda \gamma) + \mathcal{B}(\Sigma^0 \to \Lambda e^+ e^-) + \mathcal{B}(\Sigma^0 \to \Lambda \gamma \gamma) \simeq 1$ we find

$$\mathcal{B}(\Sigma^0 \to \Lambda \gamma) \simeq \frac{1}{1+R} = [99.4501(3) - 0.0619(2)a] \%$$
$$\mathcal{B}(\Sigma^0 \to \Lambda e^+ e^-) \simeq \frac{R}{1+R} = [0.5499(3) + 0.0619(2)a] \%$$

Using conservative a = 0.02(2)

 $\mathcal{B}(\Sigma^0 \to \Lambda \gamma) = 99.449(2) \%$ $\mathcal{B}(\Sigma^0 \to \Lambda e^+ e^-) = 0.551(2) \%$

Tomáš Husek (THEP, LU)

Radiative corrections for the decay $\Sigma^0 \to \Lambda e^+ e^-$

Estimate of size of correction to the magnetic form-factor slope a

- take half of the slope of the curve in the low-x region
- farther from the threshold $(\nu^2 \ll x_0 \ll 1)$:

$$\Delta a \equiv a_{(+\text{QED})} - a \simeq \frac{1}{2} \frac{\mathrm{d}\delta(x)}{\mathrm{d}x} \bigg|_{x=x}$$

 $a_{(+QED)}$: measured value implicitly containing the QED radiative correction

$$\frac{1}{2} \frac{\mathrm{d}\delta(x)}{\mathrm{d}x} \bigg|_{x=x_0} \approx -3.5\,\%$$

• bigger than the estimate on the slope $a \equiv \frac{1}{6} \langle r_{\sf M}^2 \rangle \Delta_M^2$ itself ($a \approx 1.8(3)$ %)

Using no radiative corrections in the experimental analysis

• one expects "measured" radius $\langle r_{\rm M}^2
angle_{
m (+QED)}$ to be negative

$$\langle r_{\rm M}^2 \rangle_{(+{\rm QED})} = \langle r_{\rm M}^2
angle + rac{6}{\Delta_M^2} \Delta a \,, \quad {
m with} \; rac{6}{\Delta_M^2} \Delta a pprox -35 \, {
m GeV}^{-2}$$

 $\left(\chi \mathsf{PT}: \ \langle r_{\mathsf{M}}^2 \rangle = 18.5(2.6)\,\mathsf{GeV}^{-2}\right); \text{ in general for hadronic radii: } \langle r^2 \rangle \leq (1\,\mathsf{fm})^2 \approx 25\,\mathsf{GeV}^{-2}$

We calculated complete inclusive NLO QED radiative correction to the differential decay width $\hookrightarrow \Sigma^0 \to (\Lambda e^+ e^- + \operatorname{arbitrary} \operatorname{many} \operatorname{photons})$ relative to QED LO calculation of $\Sigma^0 \to \Lambda e^+ e^-$

In particular

- lepton bremsstrahlung beyond the soft-photon approximation
- explicit calculation of two-photon-exchange (1 γ IR) contrb. and correction to $\Sigma^0\Lambda\gamma$ vertex
- radiative corrections that involve other hadronic form factors can be safely neglected \hookrightarrow model-independent results in terms of a single hadronic parameter a

Precise and conservative predictions for $\mathcal{B}(\Sigma^0 \to \Lambda \gamma)$ and $\mathcal{B}(\Sigma^0 \to \Lambda e^+ e^-)$

Estimate on the correction to the magnetic form-factor slope: $\Delta a \approx -3.5\,\%$

TH and S. Leupold, EPJC 80 (2020), arXiv:1911.02571

Thank you for listening!

Tomáš Husek (THEP, LU)

Radiative corrections for the decay $\Sigma^0 \to \Lambda e^+ e^-$

23/11/2020 16 / 16