VELO Sensor and Module Alignment

Silvia Borghi, Chris Parkes

Tracking & Alignment Workshop – 3 June 2010

- Alignment for Module and Sensor alignment with 2010 collision data (similar to what were presented last week, but fixing some twist/scaling effect).
- Comparison 2010 align with Metrology, with Ted align and v3.1
- Conclusion

All the results and plots are preliminary!

Sensor misalignment monitoring

- R and ϕ residuals has a sinusoidal dependency on the misalignment
 - $residual_{R} = -\Delta x \cos \phi_{track} + \Delta y \sin \phi_{track} \qquad (R \text{ sensor})$

 $residual_{\Phi} = \Delta x \sin \phi_{track} + \Delta y \cos \phi_{track} + \Delta \gamma r_{track} \quad (\Phi \text{ sensor})$

This method neglect the effect of Rx and Ry

Procedure of Sensor and Module alignment

- Preliminary results shown last week were affected by a a twist and a scaling.
 - The scaling disappears when we don't align for Tz for the sensor
 - The twist was introduced in Millepede (not really constraint Rz)
- Fix again Rz as Metrology and align by Kalman:
 - Kalman for the module Tx Ty Tz Rx Ry Rz and for the sensor Tx Ty [fix two modules in each side]
- Select events with halo tracks by PatVeloAlignTrackFilter
- Run 69355 about 1 milion events about 200 k tracks

Metrology Accuracy

Sensor

- Tx Ty 3 μm
- Rz 20 μrad

Module

- Tx 15 μm
- Ty 50 μm
- Tz 200 μm
- Rx Ry 1 mrad
- Rz 0.2 mrad

This does not include any temperature effect

Right side Translation Module

Phi sensor

Right side Rotation Module

Phi sensor

Left side Translation Module

Phi sensor

Left side Rotation

Phi sensor

Alignment constants: CurrentAlign - 2010

Right side **Module Translation**

Module Rotation

Some twist effect in forward region

Alignment constants: CurrentAlign - 2010

Left side

Module Translation

Module Rotation

-200

-300 -

-100

100

200

300

400

500

700 Mod Z [mm]

Ū

Alignment constants: CurrentAlign - 2010

Left side

Sensor Translation

Sensor Translation Right side

Ū

Alignment results

- Results still preliminary
- Anyway have a look at the results with the new alignment constants
- Only Velo reconstruction and with 0 outliers
- Comparing also to v3.1 alignment (other preliminary alignment by Wouter)

Sensor misalignment monitoring

R and \$\phi\$ residuals has a sinusoidal dependency on the misalignment

 $residual_{R} = -\Delta x \cos \phi_{track} + \Delta y \sin \phi_{track}$ $residual_{\Phi} = \Delta x \sin \phi_{track} + \Delta y \cos \phi_{track} + \Delta \gamma r_{track}$

This method neglect the effect of Rx and Ry

Current Alignment

3 June 2010

3 June 2010

New Alignment Overlap tracks with 4 hits in both side Current Alignment Alignment v3.1

4hits both sides Chi2/DOF

4hits both sides Pull of residual for Φ sensor

4hits both sides Multiplicity of clusters on a track

PV: Distance PV_{left}-PV_{right}

New Alignment Current Alignment Alignment v3.1

- New preliminary alignment is promising...
- But current alignment is better for overlap tracks and PV...
- Re-evaluate the two half alignment
 - Using the overlaps and PV to study better why 'inefficiency' for overlap tracks
- Next: study the sensor and module alignment stability on long period

Motion System Summary

- Three pieces of information available (through PVSS):
 - Steppermotor (number of pulses sent)
 - Resolver measurement
 - Potentiometer reading (detector safety system 0.1mm accuracy)
- Motion accuracy for resolver position:
 - Position accuracy about ~10 μm
 - Position reproducible (moving in the same direction) ~3 μm
- In x:
 - Steppermotor sends 2000 pulses for 50mm (1:40 gearing)
 - 1mm in 9 seconds; i.e. 4¹/₂ minutes to drive 30mm
 - Open position is at |x|=29mm
 - Each half can drive up to 5mm beyond nominal x = 0
- In y:
 - Steppermotor sends 2000 pulses for 250mm (1:16 gearing)
 - 1mm in 3 seconds
 - Motion in y is only possible for |x|<16mm
 - Range is -4.7 < x < 4.7 mm

