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SMEFT Lagrangian  expanded in inverse powers of Λ, equivalently in operator dimension D

ℒSMEFT = ℒSM + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + ℒD=9 + …

Known SM   
Lagrangian

Higher-dimensional 
SU(3)C x SU(2)L x U(1)Y invariant  
interactions added to the SM

SMEFT = minimal EFT above the weak scale

Assumption: 
at energies of  

interest no other  
relevant degrees of freedom 

than those of the SM 



SMEFT Lagrangian  expanded in inverse powers of Λ, equivalently in operator dimension D

ℒSMEFT = ℒSM + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + ℒD=9 + …

Known SM   
Lagrangian

In this talk only dimension-6 operators 
are taken into account

SMEFT = minimal EFT above the weak scale

ℒD=6 = ∑
i

Ci Qi

Gauge-invariant  
dimension-6 operators

Wilson coefficients



This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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Dimension-6 operators

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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Full set has 2499 distinct operators,  
including flavor structure and CP conjugates 

Alonso et al 1312.2014,  
Henning et al 1512.03433

Warsaw basis Grządkowski et al. 
 1008.4884

Wilson coefficient of these operators 
can be connected (now semi-automatically) 
to fundamental parameters of BSM models 

like SUSY, composite Higgs, etc. 

http://arxiv.org/abs/1303.3876


Warsaw Basis

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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• Warsaw basis is now commonly used in the literature 
• Convenient for many theory applications  
• Implemented in many numerical tools 
• Interpretation of various Wilson coefficients not always intuitive  
• O(200) distinct operators affecting LHC Higgs physics  
• Larger correlations between Higgs and other precision measurements    

For example, operator OHWB affects

• Higgs to γγ, Zγ, ZZ decays 
• Z pole measurements 
• Triple gauge couplings 
• W boson mass 



Higgs Basis

• Higgs basis was conceived in 2015 to facilitate practical applications of the SMEFT 
for LHC Higgs analyses  

• The construction closely follows the idea introduced by  
Gupta, Pomarol, and Riva in  [arXiv:1405.0181]

The goals of the Higgs basis

1. Each Wilson coefficient has a simple physical interpretation 
2. Higgs observables at leading order are affected by a minimal set  

of Wilson coefficients 
3. Large correlations between the Higgs and electroweak constraints are avoided  

 
In other words, the point is to amend certain impractical features of the Warsaw basis



Higgs Basis - definition

⃗c HB = MW→H
⃗C WB

Vector of  
2499 Wilson coefficients  

in Higgs basis

Vector of  
2499 Wilson coefficients  

in Warsaw basis

2499x2499 dimensional  
numerical invertible matrix

Alternatively, the same transformation can be defined at the level of gauge-invariant operators 
QHB = M−1 T

W→HQWB



Higgs Basis - map part 1

Higgs 
basis 

Wilson 
coefficients 

Warsaw 
basis 

Wilson 
coefficients 

ΔGF
= [C(3)

φl ]11 + [C(3)
φl ]22 −

1
2

[Cll]1221

space. They are related to the Wilson coe�cients in the Warsaw basis as

v�2�cz = C'⇤ � 1

4
C'D � 3

2
�GF ,

v�2cz⇤ =
1

2g2L
(C'D + 2�GF ) ,

v�2cgg =
4

g2s
C'G,

v�2c�� = 4

✓
1

g2L
C'W +

1

g2Y
C'B � 1

gLgY
C'WB

◆
,

v�2czz = 4

✓
g2LC'W + g2YC'B + gLgYC'WB

(g2L + g2Y )
2

◆
,

v�2cz� = 4

0

@C'W � C'B � g2L�g2Y
2gLgY

C'WB

g2L + g2Y

1

A ,

v�2c̃gg =
4

g2s
C'G̃,

v�2c̃�� = 4

✓
1

g2L
C'W̃ +

1

g2Y
C'B̃ � 1

gLgY
C'WB̃

◆
,

v�2c̃zz = 4

 
g2LC'W̃ + g2YC'B̃ + gLgYC'WB̃

(g2L + g2Y )
2

!
,

v�2c̃z� = 4

0

@C'W̃ � C'B̃ � g2L�g2Y
2gLgY

C'WB̃

g2L + g2Y

1

A ,

v�2��3 = �1

�
C' + 3C'⇤ � 3

4
C'D � 1

2
�GF ,

v�2[�yf ]JK = � vp
2mfJmfK

[C†
f']JK + �JK

✓
c'⇤ � 1

4
C'D � 1

2
�GF

◆
, (2.4)

where �GF = [C(3)
'l ]11 + [C(3)

'l ]22 � 1
2
[Cll]1221. The identification of these Higgs basis

parameter with certain Higgs boson couplings will become clear in Section 4.

• The vertex corrections

�gZe
L , �gZe

R , �gZu
L , �gZu

R , �gZd
L , �gZd

R , �gW `
L , �gWq

R , (2.5)

which are all 3⇥ 3 Hermitian matrices in the flavor space, except for �gWq
R which

is a general complex matrix. They are related to the Wilson coe�cients in the

4

gs = 1.2172, gL = 0.6485, gY = 0.3580, v = 246.22 GeV



5.2 Single Higgs couplings

The single Higgs couplings to matter are given by

L � h

v


(1 + �cw)

g2Lv
2

2
W+

µ W�
µ + (1 + �cz)

(g2L + g2Y )v
2

4
ZµZµ

�
X

f2u,d,e

X

IJ

p
mfImfJ

⇥
(�IJ + [�yf ]IJ) f̄LfR + h.c.

⇤

+cww
g2L
2
W+

µ⌫W
�
µ⌫ + c̃ww

g2L
2
W+

µ⌫W̃
�
µ⌫ + cw⇤g

2
L

�
W�

µ @⌫W
+
µ⌫ + h.c.

�

+cgg
g2s
4
Ga

µ⌫G
a
µ⌫ + c��

g2Lg
2
Y

4(g2L + g2Y )
Aµ⌫Aµ⌫ + cz�

gLgY
2

Zµ⌫Aµ⌫ + czz
g2L + g2Y

4
Zµ⌫Zµ⌫

+cz⇤g
2
LZµ@⌫Zµ⌫ + c�⇤gLgYZµ@⌫Aµ⌫

+c̃gg
g2s
4
Ga

µ⌫G̃
a
µ⌫ + c̃��

g2Lg
2
Y

4(g2L + g2Y )
Aµ⌫Ãµ⌫ + c̃z�

gLgY
2

Zµ⌫Ãµ⌫ + c̃zz
g2L + g2Y

4
Zµ⌫Z̃µ⌫

�
,

(5.4)

Most of the EFT parameters above are identical with the Higgs basis Wilson coe�cients,
as defined in Section 2. The remaining EFT parameters can be expressed by the Wilson
coe�cients as

�cw = �cz + 4�mw, �mw ⌘ 1

2
�gWe

L +
1

2
�gWµ

L � 1

4
[cll]1221,

cww = czz +
2g2Y

g2L + g2Y
cz� +

g4Y
(g2L + g2Y )

2
c��,

c̃ww = c̃zz +
2g2Y

g2L + g2Y
c̃z� +

g4Y
(g2L + g2Y )

2
c̃��,

cw⇤ =
1

g2L � g2Y


g2Lcz⇤ + g2Y czz �

g2Y (g
2
L � g2Y )

g2L + g2Y
cz� � g2Lg

4
Y

(g2L + g2Y )
2
c��

�
,

c�⇤ =
1

g2L � g2Y


2g2Lcz⇤ + (g2L + g2Y )czz � (g2L � g2Y )cz� �

g2Lg
2
Y

g2L + g2Y
c��

�
. (5.5)

5.3 Higgs self-interactions

The Higgs boson self-interactions take the form

L � ��v (1 + ��3)h
3 � �

4
(1 + ��4)h

4 � �5
�

v
h5 � �6

�

v2
h6, (5.6)

where ��3 is one of the Wilson coe�cients in the Higgs basis, and the remaining EFT
parameters can be expressed by the Wilson coe�cients as

��4 = 6��3 � 4

3
�cz, �5 =

3

4
��3 � 1

4
�cz, �6 =

1

8
��3 � 1

24
�cz. (5.7)
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Higgs Basis - interpretation part 1
First group of Wilson coefficients corresponds has a simple interpretation  

of certain Higgs couplings5.2 Single Higgs couplings

The single Higgs couplings to matter are given by

L � h

v


(1 + �cw)

g2Lv
2

2
W+

µ W�
µ + (1 + �cz)

(g2L + g2Y )v
2

4
ZµZµ

�
X

f2u,d,e

X

IJ

p
mfImfJ

⇥
(�IJ + [�yf ]IJ) f̄LfR + h.c.

⇤

+cww
g2L
2
W+

µ⌫W
�
µ⌫ + c̃ww

g2L
2
W+

µ⌫W̃
�
µ⌫ + cw⇤g

2
L

�
W�

µ @⌫W
+
µ⌫ + h.c.

�

+cgg
g2s
4
Ga

µ⌫G
a
µ⌫ + c��

g2Lg
2
Y

4(g2L + g2Y )
Aµ⌫Aµ⌫ + cz�

gLgY
2

Zµ⌫Aµ⌫ + czz
g2L + g2Y

4
Zµ⌫Zµ⌫

+cz⇤g
2
LZµ@⌫Zµ⌫ + c�⇤gLgYZµ@⌫Aµ⌫

+c̃gg
g2s
4
Ga

µ⌫G̃
a
µ⌫ + c̃��

g2Lg
2
Y

4(g2L + g2Y )
Aµ⌫Ãµ⌫ + c̃z�

gLgY
2

Zµ⌫Ãµ⌫ + c̃zz
g2L + g2Y

4
Zµ⌫Z̃µ⌫

�
,

(5.4)

Most of the EFT parameters above are identical with the Higgs basis Wilson coe�cients,
as defined in Section 2. The remaining EFT parameters can be expressed by the Wilson
coe�cients as

�cw = �cz + 4�mw, �mw ⌘ 1

2
�gWe

L +
1

2
�gWµ

L � 1

4
[cll]1221,

cww = czz +
2g2Y

g2L + g2Y
cz� +

g4Y
(g2L + g2Y )

2
c��,

c̃ww = c̃zz +
2g2Y

g2L + g2Y
c̃z� +

g4Y
(g2L + g2Y )

2
c̃��,

cw⇤ =
1

g2L � g2Y


g2Lcz⇤ + g2Y czz �

g2Y (g
2
L � g2Y )

g2L + g2Y
cz� � g2Lg

4
Y

(g2L + g2Y )
2
c��

�
,

c�⇤ =
1

g2L � g2Y


2g2Lcz⇤ + (g2L + g2Y )czz � (g2L � g2Y )cz� �

g2Lg
2
Y

g2L + g2Y
c��

�
. (5.5)

5.3 Higgs self-interactions

The Higgs boson self-interactions take the form

L � ��v (1 + ��3)h
3 � �

4
(1 + ��4)h

4 � �5
�

v
h5 � �6

�

v2
h6, (5.6)

where ��3 is one of the Wilson coe�cients in the Higgs basis, and the remaining EFT
parameters can be expressed by the Wilson coe�cients as

��4 = 6��3 � 4

3
�cz, �5 =

3

4
��3 � 1

4
�cz, �6 =

1

8
��3 � 1

24
�cz. (5.7)
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These Wilson coefficients at leading order 
are probed only by Higgs and diboson processes 

They were largely unconstrained before LHC,  
and remain weakly constrained nowadays!  



Higgs Basis - map part 2
Warsaw basis as

v�2�gW `
L = C

(3)
'l + f(1/2, 0)� f(�1/2,�1),

v�2�gZ`
L = �1

2
C

(3)
'l � 1

2
C

(1)
'l + f(�1/2,�1),

v�2�gZ`
R = �1

2
C(1)

'e + f(0,�1),

v�2�gZu
L =

1

2
C(3)

'q � 1

2
C(1)

'q + f(1/2, 2/3),

v�2�gZd
L = �1

2
C(3)

'q � 1

2
C(1)

'q + f(�1/2,�1/3),

v�2�gZu
R = �1

2
C'u + f(0, 2/3),

v�2�gZd
R = �1

2
C'd + f(0,�1/3),

v�2�gWq
R =

1

2
C'ud, (2.6)

where

f(T 3, Q) ⌘
⇢
�Q

gLgY
g2L � g2Y

C'WB�
✓
1

4
C'D +

1

2
�GF

◆✓
T 3 +Q

g2Y
g2L � g2Y

◆�
1. (2.7)

• The F 3 couplings
�z, �̃z, �g, �̃g, (2.8)

which are all real. They are related to the Wilson coe�cients in the Warsaw basis
as

v�2�z =
3

2
gLCW , v�2�̃z =

3

2
gLCW̃ ,

v�2�g =
CG

g3s
, v�2�̃g =

CG̃

g3s
. (2.9)

• The dipole couplings

dGu, dGd, dAe, dAu, dAd, dZe, dZu, dZd, (2.10)

which are all complex 3⇥ 3 matrices. They are related to the Wilson coe�cients
in the Warsaw basis as

v�2dGf = �16

g2s
C⇤

fG,

v�2dAf = �16

g2L

�
⌘fC

⇤
fW + C⇤

fB

�
,

v�2dZf = �16

✓
⌘f

1

g2L + g2Y
C⇤

fW � g2Y
g2L(g

2
L + g2Y )

C⇤
fB

◆
,

v�2dWf = �16

g2L
C⇤

fW , (2.11)

where ⌘u = +1, ⌘d,e = �1.
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Higgs 
basis 

Wilson 
coefficients 

Warsaw 
basis 

Wilson 
coefficients 

f (T3, Q) ≡ {− Q
gLgY

g2
L − g2

Y
CφWB − ( 1

4
CφD +

1
2

ΔGF) (T3 + Q
g2

Y

g2
L − g2

Y )}1



Higgs Basis - interpretation part 2

The Wilson coefficients δg are interpreted as vertex correction  
to electroweak gauge boson couplings to matter 

5.4 Gauge interactions

The gauge interactions have the form
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X
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f̄R�µ(�s2✓Qf + �gZf
R )fR

#
,

(5.8)

where all the departures from the SM couplings are parametrized by the vertex cor-
rections �gV f . Note that, by construction, there are no vertex corrections to photon
and gluon couplings. Most of the vertex corrections are Wilson coe�cients of the Higgs
basis, as defined in Section 2. The remaining EFT parameters can be expressed by the
Wilson coe�cients as

�gZ⌫
L = �gW `

L + �gZe
L ,

�gWq
L = V †

CKM�g
Zu
L VCKM � �gZd

L . (5.9)

5.5 Dipole interactions

The dipole-type interactions take the form

L � �1 + h/v
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"
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v
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�
µ⌫ + h.c.

�
, (5.10)

where �µ⌫ = i
2
(�µ�⌫ � �⌫�µ), and dGf , dAf , dZf , and dWf are complex 3 ⇥ 3 matrices.

Out of these, dGd, dAf , and dZf are already Wilson coe�cients of the Higgs basis, as
defined in Section 2. The remaining dipole parameters can be expressed by the Wilson
coe�cients as

⌘fdWf = dZf +
g2Y

g2L + g2Y
dAf , (5.11)

where ⌘u = +1, ⌘d,e = �1.
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These parameters are strongly constrained,  
in a model-independent way,  

by LEP-1 precision measurements

Given these constraints, in most cases  
they cannot effect LHC Higgs measurements 

in an observable way



Higgs Basis - map part 3

Warsaw basis as

v�2�gW `
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C'u + f(0, 2/3),

v�2�gZd
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2
C'd + f(0,�1/3),

v�2�gWq
R =

1

2
C'ud, (2.6)

where

f(T 3, Q) ⌘
⇢
�Q

gLgY
g2L � g2Y

C'WB�
✓
1

4
C'D +

1

2
�GF

◆✓
T 3 +Q

g2Y
g2L � g2Y

◆�
1. (2.7)

• The F 3 couplings
�z, �̃z, �g, �̃g, (2.8)

which are all real. They are related to the Wilson coe�cients in the Warsaw basis
as

v�2�z =
3

2
gLCW , v�2�̃z =

3

2
gLCW̃ ,

v�2�g =
CG

g3s
, v�2�̃g =

CG̃

g3s
. (2.9)

• The dipole couplings

dGu, dGd, dAe, dAu, dAd, dZe, dZu, dZd, (2.10)

which are all complex 3⇥ 3 matrices. They are related to the Wilson coe�cients
in the Warsaw basis as

v�2dGf = �16
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fG,
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g2L
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⌘fC
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�
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2
L + g2Y )
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◆
,

v�2dWf = �16

g2L
C⇤

fW , (2.11)

where ⌘u = +1, ⌘d,e = �1.
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The remaining (more trivial) part of the map

• Four-fermion couplings

cll, c
(1)
qq , c

(3)
qq , c

(1)
lq , c

(3)
lq , cee, cuu, cdd, ceu, ced, c

(1)
ud , c

(3)
ud

cle, clu, cld, cqe, c
(1)
qu , c

(8)
qu , c

(1)
qd , c

(8)
qd , cledq, c

(1)
quqd, c

(8)
quqd, c

(1)
lequ, c

(3)
lequ.

(2.12)

which are all 4-index tensors in the flavor space. They are trivially related to the
Wilson coe�cients in the Warsaw basis as

v�2ci = Ci. (2.13)

The full set of Higgs basis Wilson coe�cients is displayed in Eqs. (2.3), (2.5), (2.8),
(2.10), and (2.12). The map MW!H is completely specified by Eqs. (2.4), (2.6), (2.9),
(2.11), and (2.13). The physical interpretation of the Higgs basis Wilson coe�cients will
be clarified in Section 4.

3 Lagrangian for mass eigenstates

In order to derive physical predictions of the SMEFT the first step is to recast its
Lagrangian in Eq. (1.1) in terms of the mass eigenstates after electroweak symmetry
breaking. In the Warsaw basis this exercise was completed in [12], where all the inter-
actions vertices with the corresponding Feynman rule were given. To derive the mass
eigenstate Lagrangian in the Higgs basis one could for example borrow the interaction
terms from that reference and translate the couplings to the Higgs basis using the map in
Eqs. (2.4), (2.6), (2.9), (2.11), and (2.13).3 Below I quote the part of the mass eigenstate
Lagrangian most relevant for the LHC and Higgs phenomenology.

By definition of the mass eigenstate basis, the kinetic terms for the Higgs, W , Z
bosons, photons, gluons, and fermions are diagonal and canonically normalized:

L � 1

2
@µĥ@µĥ� 1

2
W+

µ⌫W
�
µ⌫ �

1

4
Zµ⌫Zµ⌫ � 1

4
Aµ⌫Aµ⌫ � 1

4
Ga

µ⌫G
a
µ⌫ +

X

f2u,d,e,⌫

if̄�µ@µf. (3.1)

Above, we mark the Higgs boson field ĥ because later we will switch to a more convenient
variable to describe this particle. The mass terms for the Higgs, W , Z bosons, and
fermions are also diagonal:

L � �1

2
m2

hh
2 +m2

WW+
µ W�

µ +
1

2
m2

ZZµZµ �
X

f2u,d,e

mf f̄f, (3.2)

3 In practice, we rederive all interactions using a custom-made computer code.
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Higgs Basis - structure

⃗c HB =

⃗c Higgs

⃗δ gvertex

⃗d dipole

⃗c F3

⃗c 4fermion

At LO, probed only by Higgs and diboson processes 
Most relevant for typical LHC Higgs analyses

Affecting Higgs observables, but almost all 
strongly constrained by other precision measurements  

Irrelevant for typical LHC Higgs analyses

Affecting Higgs observables, but most 
are constrained by other precision measurements  

Irrelevant for many LHC Higgs analyses

At LO, probed  only by diboson processes 
Most relevant for typical LHC Higgs analyses

At LO, probed e.g. by Drell-Yan processes 
Irrelevant for typical LHC Higgs analyses



Higgs Basis - conclusions

For typical LHC Higgs analyses,  
in the Higgs basis only a limited set of Wilson coefficients is relevant

hand, ~CWB is a 2499-dimensional vector of Wilson coe�cients in the Warsaw basis of
dimension-6 operators [2]. If one uses SMEFT beyond tree level, one needs to specify
at which scale the map in Eq. (2.1) is defined; in our conventions, Eq. (2.1) holds at
the scale mZ . Finally, MW!H is a 2499 ⇥ 2499-dimensional invertible matrix. It was
obtained in Ref. [11] and is quote below.2 As we shall see shortly, it depends on the
parameters gL, gY , and gs, which are the SM gauge couplings at the scale mZ , and on v
and �, which are the Higgs VEV and self-coupling. Their central values are

gs = 1.2172, gL = 0.6485, gY = 0.3580, v = 246.22 GeV, � = 0.1291. (2.2)

and their errors can be ignored from the present purpose.
We are ready to write down the map MW!H . The vector ~cHB in Eq. (2.1) contains

the following Wilson coe�cients:

• The Higgs couplings

�cz, cz⇤, czz, c��, cz� , cgg, ��3, c̃zz, c̃��, c̃z� , c̃gg, �yu, �yd, �ye, (2.3)

where the blue parameters are real, and �y are 3⇥3 complex matrices in the flavor

2With respect to that reference, we adapted sign, naming, and flavor conventions to match those of
WCxf [10]. See Appendix A for more details.

3

They are interpreted as certain Higgs couplings in the SMEFT Lagrangian

Likelihood obtained for these parameters can be translated to any other SMEFT basis,  
in particular to the Warsaw Basis  

(plus eventually a handful of dipole and vertex corrections)
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