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1 Pep talk

We consider the extension of the Standard Model (SM) by dimension-6 operators Qi

invariant under the SM gauge symmetries [1, 2]:

LSMEFT = LSM +
∑
i

CiQi . (1.1)

The Qi set is assumed to be complete and non-redundant, that is to form a basis. Such
sets are known to consist of 2499 distinct operators; explicit constructions include the
Warsaw basis [2] and the SILH basis [3]. The parameters Ci are called the Wilson coef-
ficients. Together with the parameters of the SM Lagrangian, they make the parameter
space of the the SMEFT. In our conventions the Wilson coefficients Ci have dimensions
[mass]−2 and they count as O(Λ−2) in the EFT expansion. Operators with dimensions
higher than six, as well as dimension-5 operators are ignored in this discussion.

The idea behind the Higgs basis [4] was to create a new parameterization of the space
of dimension-6 SMEFT operators satisfying the following properties:

1. Each Wilson coefficient has a simple physical interpretation;

2. Higgs observables at leading order are affected by a minimal set of Wilson coeffi-
cients;

3. Large correlations between the Higgs and electroweak constraints are avoided.

These features are very helpful for global analyses targeting the multi-parameter space
of the SMEFT, see e.g. [5, 6, 7, 8]. The Higgs basis is a realization of the idea first laid
out in [9], and its Wilson coefficients are what is called primary effects in that reference.

2 Definition of the Higgs basis

In Ref. [4] the Higgs basis was introduced as follows. One started with the SMEFT La-
grangian including dimension-6 operators in the SILH basis [3]. From it, a Lagrangian
of mass eigenstates after electroweak symmetry breaking was derived. That Lagrangian
was brought to a more convenient form by a series of fields and couplings redefini-
tions. Finally, the Higgs basis was introduced by identifying a set of independent linear
combinations of SILH Wilson coefficients that fully characterizes the mass eigenstate
Lagrangian. This algorithm permitted to construct a 1-to-1 linear map connecting the
Higgs basis and SILH basis Wilson coefficients.

In this note we follow a different route. We define the Higgs basis via a map MW→H :1

~cHB = MW→H ~CWB. (2.1)

Here, ~cHB is a 2499-dimensional vector of Wilson coefficients in the Higgs basis to be
defined shortly. By convention, all components of ~cHB are dimensionless. On the other

1Alternatively, rather than defining the Higgs basis via a rotation of Wilson coefficients we could
define it as linear combinations of gauge-invariant dimension-6 operators. At the operator level, a
definition equivalent to the one in Eq. (2.1) would be QHB = M−1T

W→HQWB, where QWB is the complete
set of dimension-6 operators in the Warsaw basis.
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hand, ~CWB is a 2499-dimensional vector of Wilson coefficients in the Warsaw basis of
dimension-6 operators [2]. If one uses SMEFT beyond tree level, one needs to specify
at which scale the map in Eq. (2.1) is defined; in our conventions, Eq. (2.1) holds at
the scale mZ . Finally, MW→H is a 2499 × 2499-dimensional invertible matrix. It was
obtained in Ref. [11] and is quote below.2 As we shall see shortly, it depends on the
parameters gL, gY , and gs, which are the SM gauge couplings at the scale mZ , and on v
and λ, which are the Higgs VEV and self-coupling. Their central values are

gs = 1.2172, gL = 0.6485, gY = 0.3580, v = 246.22 GeV, λ = 0.1291. (2.2)

and their errors can be ignored from the present purpose.
We are ready to write down the map MW→H . The vector ~cHB in Eq. (2.1) contains

the following Wilson coefficients:

• The Higgs couplings

δcz, cz�, czz, cγγ, czγ, cgg, δλ3, c̃zz, c̃γγ, c̃zγ, c̃gg, δyu, δyd, δye, (2.3)

where the blue parameters are real, and δy are 3×3 complex matrices in the flavor

2With respect to that reference, we adapted sign, naming, and flavor conventions to match those of
WCxf [10]. See Appendix A for more details.
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space. They are related to the Wilson coefficients in the Warsaw basis as

v−2δcz = Cϕ� −
1

4
CϕD −

3

2
∆GF

,

v−2cz� =
1

2g2
L

(CϕD + 2∆GF
) ,

v−2cgg =
4

g2
s

CϕG,

v−2cγγ = 4

(
1

g2
L

CϕW +
1

g2
Y

CϕB −
1

gLgY
CϕWB

)
,

v−2czz = 4

(
g2
LCϕW + g2

YCϕB + gLgYCϕWB

(g2
L + g2

Y )2

)
,

v−2czγ = 4

CϕW − CϕB − g2L−g
2
Y

2gLgY
CϕWB

g2
L + g2

Y

 ,

v−2c̃gg =
4

g2
s

CϕG̃,

v−2c̃γγ = 4

(
1

g2
L

CϕW̃ +
1

g2
Y

CϕB̃ −
1

gLgY
CϕWB̃

)
,

v−2c̃zz = 4

(
g2
LCϕW̃ + g2

YCϕB̃ + gLgYCϕWB̃

(g2
L + g2

Y )2

)
,

v−2c̃zγ = 4

CϕW̃ − CϕB̃ − g2L−g
2
Y

2gLgY
CϕWB̃

g2
L + g2

Y

 ,

v−2δλ3 = −1

λ
Cϕ + 3Cϕ� −

3

4
CϕD −

1

2
∆GF

,

v−2[δyf ]JK = − v√
2mfJmfK

[C†fϕ]JK + δJK

(
cϕ� −

1

4
CϕD −

1

2
∆GF

)
, (2.4)

where ∆GF
= [C

(3)
ϕl ]11 + [C

(3)
ϕl ]22 − 1

2
[Cll]1221. The interpretation of the Higgs ba-

sis Wilson coefficients on the left-hand-side of Eq. (2.4) as certain Higgs boson
couplings will become clear in Section 4.

• The vertex corrections

δgZeL , δgZeR , δgZuL , δgZuR , δgZdL , δgZdR , δgW`
L , δgWq

R , (2.5)

which are all 3× 3 Hermitian matrices in the flavor space, except for δgWq
R which

is a general complex matrix. They are related to the Wilson coefficients in the
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Warsaw basis as

v−2δgW`
L = C

(3)
ϕl + f(1/2, 0)− f(−1/2,−1),

v−2δgZ`L = −1

2
C

(3)
ϕl −

1

2
C

(1)
ϕl + f(−1/2,−1),

v−2δgZ`R = −1

2
C(1)
ϕe + f(0,−1),

v−2δgZuL =
1

2
C(3)
ϕq −

1

2
C(1)
ϕq + f(1/2, 2/3),

v−2δgZdL = −1

2
C(3)
ϕq −

1

2
C(1)
ϕq + f(−1/2,−1/3),

v−2δgZuR = −1

2
Cϕu + f(0, 2/3),

v−2δgZdR = −1

2
Cϕd + f(0,−1/3),

v−2δgWq
R =

1

2
Cϕud, (2.6)

where

f(T 3, Q) ≡
{
−Q gLgY

g2
L − g2

Y

CϕWB−
(

1

4
CϕD +

1

2
∆GF

)(
T 3 +Q

g2
Y

g2
L − g2

Y

)}
1. (2.7)

• The F 3 couplings
λz, λ̃z, λg, λ̃g, (2.8)

which are all real. They are related to the Wilson coefficients in the Warsaw basis
as

v−2λz =
3

2
gLCW , v−2λ̃z =

3

2
gLCW̃ ,

v−2λg =
CG
g3
s

, v−2λ̃g =
CG̃
g3
s

. (2.9)

• The dipole couplings

dGu, dGd, dAe, dAu, dAd, dZe, dZu, dZd, (2.10)

which are all complex 3× 3 matrices. They are related to the Wilson coefficients
in the Warsaw basis as

v−2dGf = −16

g2
s

C∗fG,

v−2dAf = −16

g2
L

(
ηfC

∗
fW + C∗fB

)
,

v−2dZf = −16

(
ηf

1

g2
L + g2

Y

C∗fW −
g2
Y

g2
L(g2

L + g2
Y )
C∗fB

)
,

v−2dWf = −16

g2
L

C∗fW , (2.11)

where ηu = +1, ηd,e = −1.
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• Four-fermion couplings

cll, c
(1)
qq , c

(3)
qq , c

(1)
lq , c

(3)
lq , cee, cuu, cdd, ceu, ced, c

(1)
ud , c

(3)
ud

cle, clu, cld, cqe, c
(1)
qu , c

(8)
qu , c

(1)
qd , c

(8)
qd , cledq, c

(1)
quqd, c

(8)
quqd, c

(1)
lequ, c

(3)
lequ.

(2.12)

which are all 4-index tensors in the flavor space. They are trivially related to the
Wilson coefficients in the Warsaw basis as

v−2ci = Ci. (2.13)

The full set of Higgs basis Wilson coefficients is displayed in Eqs. (2.3), (2.5), (2.8),
(2.10), and (2.12). The map MW→H is completely specified by Eqs. (2.4), (2.6), (2.9),
(2.11), and (2.13). The physical interpretation of the Higgs basis Wilson coefficients will
be clarified in Section 4.

3 Lagrangian for mass eigenstates

In order to derive physical predictions of the SMEFT the first step is to recast its
Lagrangian in Eq. (1.1) in terms of the mass eigenstates after electroweak symmetry
breaking. In the Warsaw basis this exercise was completed in [12], where all the inter-
actions vertices with the corresponding Feynman rule were given. To derive the mass
eigenstate Lagrangian in the Higgs basis one could for example borrow the interaction
terms from that reference and translate the couplings to the Higgs basis using the map in
Eqs. (2.4), (2.6), (2.9), (2.11), and (2.13).3 Below I quote the part of the mass eigenstate
Lagrangian most relevant for the LHC and Higgs phenomenology.

By definition of the mass eigenstate basis, the kinetic terms for the Higgs, W , Z
bosons, photons, gluons, and fermions are diagonal and canonically normalized:

L ⊃ 1

2
∂µĥ∂µĥ−

1

2
W+
µνW

−
µν −

1

4
ZµνZµν −

1

4
AµνAµν −

1

4
Ga
µνG

a
µν +

∑
f∈u,d,e,ν

if̄γµ∂µf. (3.1)

Above, we mark the Higgs boson field ĥ because later we will switch to a more convenient
variable to describe this particle. The mass terms for the Higgs, W , Z bosons, and
fermions are also diagonal:

L ⊃ −1

2
m2
hh

2 +m2
WW

+
µ W

−
µ +

1

2
m2
ZZµZµ −

∑
f∈u,d,e

mf f̄f, (3.2)

3 In practice, we rederive all interactions using a custom-made computer code.
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where in the Higgs basis

m2
h = 2λ̂v̂2

[
1− 3ĝ4

L

ĝ2
L − ĝ2

Y

cz� −
3ĝ2

Lĝ
2
Y

ĝ2
L − ĝ2

Y

czz +
3ĝ4

Lĝ
4
Y

(ĝ2
L − ĝ2

Y )(ĝ2
L + ĝ2

Y )2
cγγ +

3ĝ2
Lĝ

2
Y

ĝ2
L + ĝ2

Y

czγ

−5

2
δcz +

3

2
δλ3 − 3∆

]
,

m2
W =

ĝ2
Lv̂

2

4

[
ĝ2
L

2
czz +

ĝ2
Lĝ

4
Y

2(ĝ2
L + ĝ2

Y )2
cγγ +

ĝ2
Lĝ

2
Y

ĝ2
L + ĝ2

Y

czγ

]
m2
Z =

(ĝ2
L + ĝ2

Y )v̂2

4

[
ĝ2
Y czγ −

ĝ2
Y (ĝ2

L + ĝ2
Y )

ĝ2
L − ĝ2

Y

cz� +
ĝ2
Lĝ

4
Y

ĝ4
L − ĝ4

Y

cγγ

+
ĝ6
L − ĝ4

Lĝ
2
Y − 3ĝ2

Lĝ
4
Y − ĝ6

Y

2ĝ2
L(ĝ2

L − ĝ2
Y )

czz −
(

1 +
ĝ2
Y

ĝ2
L

)
∆

]
(3.3)

and ∆ ≡ δgWe
L + δgWµ

L − 1
2
[cll]1221. Above ĝL and ĝY are the SU(2) × U(1) gauge

couplings in the SM Lagrangian LSM in Eq. (1.1), v̂ is the vacuum expectation value of
the Higgs field, 〈H†H〉 = v̂2/2, and λ̂ is the quartic Higgs coupling in the SM Lagrangian.
Since dimension-6 operators affect the input observables from which these couplings are
determined in the SM context, in SMEFT one cannot assume the hatted coupling have
the numerical values in Eq. (2.2). In fact, their numerical value vary as a function of
dimension-6 Wilson coefficients.

The gluon couplings to matter are given by

L ⊃ −ĝs
(

1 +
ĝ2
s

4
cgg

)
Ga
µ

∑
f∈u,d

f̄γµT
af. (3.4)

The photon couplings to matter are given by

L ⊃ − ĝLĝY√
ĝ2
L + ĝ2

Y

(
1 +

ĝ2
Lĝ

2
Y

4(ĝ2
L + ĝ2

Y )
cγγ

)
Aµ

∑
f∈u,d,e

Qf f̄γµf. (3.5)

The Z boson couplings to charged leptons and quarks are given by

L ⊃ −
√
ĝ2
L + ĝ2

YZµ
∑

f∈u,d,e

f̄γµ

(
T 3
f − ŝ2

θQf + δ̂gZf
)
f (3.6)

where ŝθ = ĝY /
√
ĝ2
L + ĝ2

Y and

δ̂gZf = δgZf+

(
T 3
f +

ĝ2
Y

ĝ2
L − ĝ2

Y

Qf

)(
ĝ2
L

2
cz� +

ĝ2
L + ĝ2

Y

4
czz

)
−Qf

ĝ2
Lĝ

2
Y

2(ĝ2
L − ĝ2

Y )(ĝ2
L + ĝ2

Y )2
cγγ.

(3.7)
The contact interactions between fermions and the Higgs and Z bosons are given by

L ⊃ −
√
ĝ2
L + ĝ2

Y

(
2ĥ

v̂
+
ĥ2

v̂2

)
Zµ

∑
f∈u,d,e,ν

f̄γµδ̂g
hZff (3.8)

where

δ̂ghZf = δgZf+
ĝ2
L

2

(
T 3
f +

ĝ2
Y

ĝ2
L − ĝ2

Y

Qf

)
cz�−Qf

ĝ2
Lĝ

2
Y

2(ĝ2
L − ĝ2

Y )

(
czz +

ĝ2
L − ĝ2

Y

ĝ2
L + ĝ2

Y

czγ +
ĝ2
Lĝ

2
Y

(ĝ2
L + ĝ2

Y )2
cγγ

)
.

(3.9)

7



The cubic Higgs boson self-interactions are given by

L ⊃ −λ̂v̂(1 + δ̂λ3)ĥ3 +
λ̂

(2)
3

v̂
ĥ(∂µĥ)2, (3.10)

where

δ̂λ3 = − 11ĝ4
L

2(ĝ2
L − ĝ2

Y )
cz� −

11ĝ2
Lĝ

2
Y

2(ĝ2
L − ĝ2

Y )
czz +

11ĝ4
Lĝ

4
Y

2(ĝ2
L − ĝ2

Y )(ĝ2
L + ĝ2

Y )2
cγγ +

11ĝ2
Lĝ

2
Y

2(ĝ2
L + ĝ2

Y )
czγ

−9

2
δcz +

5

2
δλ3 −

11

2
∆,

λ̂
(2)
3 = − 3ĝ4

L

ĝ2
L − ĝ2

Y

cz� −
3ĝ2

Lĝ
2
Y

ĝ2
L − ĝ2

Y

czz +
3ĝ4

Lĝ
4
Y

(ĝ2
L − ĝ2

Y )(ĝ2
L + ĝ2

Y )2
cγγ +

3ĝ2
Lĝ

2
Y

ĝ2
L + ĝ2

Y

czγ

−2δcz − 3∆. (3.11)

The SM-like Higgs boson couplings to massive gauge bosons are given by

L ⊃ ĥ

v̂

[
(1 + δ̂cw)

ĝ2
Lv̂

2

2
W+
µ W

−
µ + (1 + δ̂cz)

(ĝ2
L + ĝ2

Y )v̂2

4
ZµZµ

]
, (3.12)

where

δ̂cw = δcz +
3ĝ4

L

2(ĝ2
L − ĝ2

Y )
cz� +

ĝ2
L(ĝ2

L + 2ĝ2
Y )

2(ĝ2
L − ĝ2

Y )
czz −

ĝ2
Lĝ

4
Y (2ĝ2

L + ĝ2
Y )

2(ĝ2
L − ĝ2

Y )(ĝ2
L + ĝ2

Y )2
cγγ −

ĝ2
Lĝ

2
Y

2(ĝ2
L + ĝ2

Y )
czγ

+
3

2
∆,

δ̂cz = δcz +
(3ĝ4

L − 4ĝ2
Lĝ

2
Y )

2(ĝ2
L − ĝ2

Y )
cz� +

ĝ4
L − ĝ2

Lĝ
2
Y − ĝ4

Y

2(ĝ2
L − ĝ2

Y )
czz +

ĝ4
Lĝ

4
Y

2(ĝ2
L − ĝ2

Y )(ĝ2
L + ĝ2

Y )2
cγγ +

ĝ2
Lĝ

2
Y

2(ĝ2
L + ĝ2

Y )
czγ

−1

2
∆ (3.13)

The 2-derivative Higgs boson couplings to gauge bosons are given by

L ⊃ ĥ

v̂

{
cgg

ĝ2
s

4
Ga
µνG

a
µν + c̃gg

ĝ2
s

4
Ga
µνG̃

a
µν + cww

ĝ2
L

2
W+
µνW

−
µν + c̃ww

ĝ2
L

2
W+
µνW̃

−
µν

+cγγ
ĝ2
Lĝ

2
Y

4(ĝ2
L + ĝ2

Y )
AµνAµν + c̃γγ

ĝ2
Lĝ

2
Y

4(ĝ2
L + ĝ2

Y )
AµνÃµν + czγ

ĝLĝY
2

ZµνAµν + c̃zγ
ĝLĝY

2
ZµνÃµν

+czz
ĝ2
L + ĝ2

Y

4
ZµνZµν + c̃zz

ĝ2
L + ĝ2

Y

4
ZµνZ̃µν ,

}
, (3.14)

where

cww = czz +
2ĝ2

Y

ĝ2
L + ĝ2

Y

czγ +
ĝ4
Y

(ĝ2
L + ĝ2

Y )2
cγγ,

c̃ww = c̃zz +
2ĝ2

Y

ĝ2
L + ĝ2

Y

c̃zγ +
ĝ4
Y

(ĝ2
L + ĝ2

Y )2
c̃γγ. (3.15)
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4 New variables

The Lagrangian displayed in Section 3 is perfectly legal, and come used to calculate
physical predictions of SMEFT. However, it has a number of inconvenient features. In
this section, we use equations of motion and field and couplings redefinitions to bring
it into a more convenient form, where the physical interpretation of the Higgs basis
Wilson coefficients is more transparent. We stress that this is purely cosmetic: the
physical observables up to O(1/Λ2) in the EFT expansion are exactly the same, whether
calculated with the fields and couplings in Section 3 or the ones in Section 4.

Below we enumerate the redefinitions and briefly discuss motivations for each of
them.

#1 In the SM, the hatted couplings ĝs, ĝL, ĝY , λ̂, and the VEV v̂ can be directly
related to input observables. On that basis they can be assigned well-defined numerical
values with error intervals. That is no longer true in the SMEFT. As can be seen in
Eq. (3.3) and Eq. (3.5), the presence of dimension-6 operators complicates the relation
between the SM couplings and traditional input observables such as mZ or α. For this
reason it is convenient to introduce a new (unhatted) set of of couplings, related to the
original couplings by

ĝs = gs (1 + δgs) , ĝL = gL (1 + δgL) , ĝY = gY (1 + δgY ) ,

v̂ = v (1 + δv) , λ̂ = λ (1 + δλ) . (4.1)

We choose the shifts as

δgs = −g
2
s

4
cgg,

δgL = − g4
L

2(g2
L − g2

Y )
cz� −

g2
L(g2

L + g2
Y )

4(g2
L − g2

Y )
czz +

g2
Lg

4
Y

4(g4
L − g4

Y )
cγγ,

δgY =
g2
Lg

2
Y

2(g2
L − g2

Y )
cz� +

g2
Y (g2

L + g2
Y )

4(g2
L − g2

Y )
czz −

g4
Lg

2
Y

4(g4
L − g4

Y )
cγγ,

δv =
g4
L

2(g2
L − g2

Y )
cz� +

g2
Lg

2
Y

2(g2
L − g2

Y )
czz −

g4
Lg

4
Y

2(g2
L − g2

Y )(g2
L + g2

Y )2
cγγ −

g2
Lg

2
Y

2(g2
L + g2

Y )
czγ +

1

2
∆,

δλ =
2g4

L

g2
L − g2

Y

cz� +
2g2

Lg
2
Y

g2
L − g2

Y

czz −
2g4

Lg
4
Y

(g2
L − g2

Y )(g2
L + g2

Y )2
cγγ −

2g2
Lg

2
Y

g2
L + g2

Y

czγ

+
5

2
δcz −

3

2
δλ3 + 2∆. (4.2)

Recall that ∆ ≡ δgWe
L + δgWµ

L − 1
2
[cll]1221. In these new variables, the mass terms in

Eq. (3.3) simplify

m2
h = 2λv2, m2

Z =
(g2
L + g2

Y )v2

4
, m2

W =
g2
Lv

2

4
(1 + ∆) . (4.3)

Furthermore, the gluon and photon couplings to matter in Eq. (3.4) and Eq. (3.5)
simplify as

L ⊃ −gsGa
µ

∑
f∈u,d

f̄γµT
af − gLgY√

g2
L + g2

Y

Aµ
∑

f∈u,d,e

Qf f̄γµf. (4.4)
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Finally, one can show that the Fermi constant measured in muon decay is related via
GF = 1√

2v2
to the parameter v in Eq. (4.1). All in all, the new parameter set gs, gL, gY ,

v, λ introduced in Eq. (4.1), at tree level, is related to the input observables αs, α, mZ ,
GF , mh in the same way as the corresponding parameters in the SM. With these new
parameters the mass eigenstate Lagrangian simplifies considerably, and moreover they
can be assigned the numerical values displayed in Eq. (2.2), which are independent of
the dimension-6 Wilson coefficients up to O( 1

16π2Λ2 ) corrections.
#2 The cubic Higgs boson interactions in Eq. (3.10) come in two forms: one the

familiar SM-like cubic coupling, and the other a 2-derivative interaction. However, the
latter can be eliminated by a suitable choice of variables, after which its effect is absorbed
into the former, and into other couplings involving two Higgs bosons and gauge bosons
and/or fermions. To this end one can perform the following non-linear redefinition of
the Higgs field:

ĥ = h+ δh

(
h2 +

1

3
h3

)
, (4.5)

where

δh =
3g4

L

2(g2
L − g2

Y )
cz� +

3g2
Lg

2
Y

2(g2
L − g2

Y )
czz −

3g4
Lg

4
Y

2(g2
L − g2

Y )(g2
L + g2

Y )2
cγγ −

3g2
Lg

2
Y

2(g2
L + g2

Y )
czγ

+δcz +
3

2
∆. (4.6)

This eliminates all derivative Higgs boson self-interactions from the Lagrangian. In the
new variable h the self-interactions take the form

L ⊃ −λv (1 + δλ3)h3 − λ

4
(1 + δλ4)h4 − λ5

λ

v
h5 − λ6

λ

v2
h6, (4.7)

where

δλ4 = 6δλ3 −
4

3
δcz, λ5 =

3

4
δλ3 −

1

4
δcz, λ6 =

1

8
δλ3 −

1

24
δcz. (4.8)

We stress that, although the field redefinition in Eq. (4.5) changes the Lagrangian, it
does not change on-shell S-matrix elements. More generally, on-shell S-matrix elements,
whether tree- or loop-level, are not affected by general field redefinitions, even non-linear
ones or non-gauge-invariant ones, as long as they satisfy certain minimal conditions [13].
Therefore, amplitudes for all Higgs boson production processes will be the same whether
calculated with the Lagrangian in Section 3 using the field ĥ, or with the Lagrangian in
this section using the field h.

#3 In the new variables introduced in this section, the Z boson couplings to charged
leptons and quarks also simplify:

L ⊃ −
√
g2
L + g2

YZµ
∑

f∈u,d,e

f̄γµ
(
T 3
f − s2

θQf + δgZf
)
f, (4.9)

where sθ = gY /
√
g2
L + g2

Y . That is to say, the Wilson coefficients δgZf in the Higgs basis,
cf. Eq. (2.5), are interpreted as vertex corrections to the Z boson couplings as compared
to the SM prediction. There is a similar kind of interaction in Eq. (3.8) which differs from
Eq. (4.9) by the presence of additional Higgs boson fields. Since it is already O(Λ−2),

10



it remains the same in the new variables, except for the trivial relabeling X̂ → X. It is
however possible to combine the vertex correction in Eq. (4.9) and the Higgs interactions
in Eq. (4.9) into one compact expression:

L ⊃ −
√
g2
L + g2

YZµ

(
1 +

h

v

)2 ∑
f∈u,d,e

f̄γµδg
Zff, (4.10)

The motivation to do so is the following. The interaction in Eq. (3.8) are certainly
relevant for the LHC Higgs phenomenology (in particular in the H → ZZ∗ channel) and
must be taken into account to correctly assess the parameter space. On the other hand,
there are strong model independent constraints on the vertex corrections δgZf [7], at
the level of O(10−3) for the leptonic vertex correction. Such strongly suppressed vertex
corrections will not be relevant for LHC Higgs phenomenology, where typical accuracy is
O(10−1). Eliminating from Eq. (3.8) all terms not proportional to the vertex correction
δg offers users an option to ignore this class of interactions in the LHC context. In
practice, the elimination can be achieved by adding to the Lagrangian the terms

Leom =

(
2h

v
+
h2

v2

){
xZBZµ

[
∂νBνµ +

igY
2
H†
←→
DµH + gY j

Y
µ

]
+xZWZµ

[
DνW

3
νµ +

i

2
gLH

†σ3←→DµH + gLj
3
µ

]
+

2∑
i=1

xWW
i
µ

[
DνW

i
νµ +

i

2
gLH

†σi
←→
DµH + gLj

i
µ

]}
. (4.11)

where jaµ and jYµ are the fermionic currents coupled to the SU(2) × U(1) gauge bosons
in the SM, and

xZB = −
g2
LgY

√
g2
L + g2

Y

2(g2
L − g2

Y )
cz� −

g2
LgY

√
g2
L + g2

Y

2(g2
L − g2

Y )
czz +

g4
Lg

3
Y

2(g2
L − g2

Y )(g2
L + g2

Y )3/2
cγγ +

g2
LgY

2
√
g2
L + g2

Y

czγ,

xZW = −
g3
L

√
g2
L + g2

Y

2(g2
L − g2

Y )
cz� −

gLg
2
Y

√
g2
L + g2

Y

2(g2
L − g2

Y )
czz +

g3
Lg

4
Y

2(g2
L − g2

Y )(g2
L + g2

Y )3/2
cγγ +

gLg
2
Y

2
√
g2
L + g2

Y

czγ,

xW = − g4
L

2(g2
L − g2

Y )
cz� −

g2
Lg

2
Y

2(g2
L − g2

Y )
czz +

g4
Lg

4
Y

2(g2
L − g2

Y )(g2
L + g2

Y )2
cγγ +

g2
Lg

2
Y

2(g2
L + g2

Y )
czγ. (4.12)

Note that each term in square brackets in Eq. (4.11) vanishes by the SM equations
of motion. Therefore adding it to the Lagrangian does not change S-matrix elements,
whether at tree or at loop level. The role of Eq. (4.11) is to eliminate all hnV f̄f
contact interactions that are not proportional to the vertex corrections δg. Of course,
the eliminated interaction do not vanish, but re-emerge in a different (more transparent)
form. In this case, their effect on single Higgs processes is taken over by 2-derivative
Higgs boson interactions with electroweak gauge bosons:

L ⊃ cz�g
2
LZµ∂νZµν + cγ�gLgYZµ∂νAµν + cw�g

2
L

(
W−
µ ∂νW

+
µν + h.c.

)
, (4.13)

where cz� is already one of the Higgs basis Wilson coefficients, and the other two pa-
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rameters can be expressed by the Wilson coefficients as

cw� =
1

g2
L − g2

Y

[
g2
Lcz� + g2

Y czz −
g2
Y (g2

L − g2
Y )

g2
L + g2

Y

czγ −
g2
Lg

4
Y

(g2
L + g2

Y )2
cγγ

]
cγ� =

1

g2
L − g2

Y

[
2g2

Lcz� + (g2
L + g2

Y )czz − (g2
L − g2

Y )czγ −
g2
Lg

2
Y

g2
L + g2

Y

cγγ

]
. (4.14)

The change of variables and transformations described in #1, #2, #3 lead to a
more convenient form of the mass eigenstate Lagrangian, in which the interpretation of
various Higgs basis Wilson coefficients is more transparent. The Lagrangian in these
variables is the one introduced in Ref. [4]. However, we stress again that applying these
transformations is a question of taste. Using the original variables and mass eigenstate
Lagrangian from Section 3 would lead to the same amplitudes for all physical processes
up to O(Λ−2), that is up to the maximum order for which our EFT is defined.

5 Final Lagrangian

In this section we summarize the SMEFT Lagrangian in the Higgs basis, rewritten in
the variables introduced in Section 4. This is the same Lagrangian as the one in Ref. [4],
up to change in sign and CKM conventions to match those in WCxF. The idea is to
list here all terms that may be relevant for the current Higgs analyses at the LHC. The
complete Lagrangian is available in a custom-made computer code, and any additional
terms can be listed on request.

5.1 Kinetic and mass terms

The kinetic terms are diagonal and canonically normalized:

L ⊃ 1

2
∂µh∂µh−

1

2
W+
µνW

−
µν −

1

4
ZµνZµν −

1

4
AµνAµν −

1

4
Ga
µνG

a
µν +

∑
f∈u,d,e,ν

if̄γµ∂µf. (5.1)

Here h, W±
µ , Zµ, Aµ, Ga

µ and f are respectively Higgs boson, W boson, Z boson, photon,
gluon, and fermion fields.

The mass terms are given by

L ⊃ −1

2
m2
hh

2 +m2
WW

+
µ W

−
µ +

1

2
m2
ZZµZµ −

∑
f∈u,d,e

mf f̄f, (5.2)

where

mh =
√

2λv,

mZ =

√
g2
L + g2

Y v

2
,

mW =
gLv

2
(1 + δmw) , δmw =

1

2
δgWe

L +
1

2
δgWµ

L − 1

4
[cll]1221,

mf =
Yfv√

2
(1 + δmf ) , δmfJ =

1

2
[δyf ]JJ −

1

2
δcz. (5.3)

Note that the neutrinos are treated as massless here.
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5.2 Single Higgs couplings

The single Higgs couplings to matter are given by

L ⊃ h

v

[
(1 + δcw)

g2
Lv

2

2
W+
µ W

−
µ + (1 + δcz)

(g2
L + g2

Y )v2

4
ZµZµ

−
∑

f∈u,d,e

∑
IJ

√
mfImfJ

[
(δIJ + [δyf ]IJ) f̄LfR + h.c.

]
+cww

g2
L

2
W+
µνW

−
µν + c̃ww

g2
L

2
W+
µνW̃

−
µν + cw�g

2
L

(
W−
µ ∂νW

+
µν + h.c.

)
+cgg

g2
s

4
Ga
µνG

a
µν + cγγ

g2
Lg

2
Y

4(g2
L + g2

Y )
AµνAµν + czγ

gLgY
2

ZµνAµν + czz
g2
L + g2

Y

4
ZµνZµν

+cz�g
2
LZµ∂νZµν + cγ�gLgYZµ∂νAµν

+c̃gg
g2
s

4
Ga
µνG̃

a
µν + c̃γγ

g2
Lg

2
Y

4(g2
L + g2

Y )
AµνÃµν + c̃zγ

gLgY
2

ZµνÃµν + c̃zz
g2
L + g2

Y

4
ZµνZ̃µν

]
,

(5.4)

Most of the EFT parameters above are identical with the Higgs basis Wilson coefficients,
as defined in Section 2. The remaining EFT parameters can be expressed by the Wilson
coefficients as

δcw = δcz + 4δmw, δmw ≡
1

2
δgWe

L +
1

2
δgWµ

L − 1

4
[cll]1221,

cww = czz +
2g2

Y

g2
L + g2

Y

czγ +
g4
Y

(g2
L + g2

Y )2
cγγ,

c̃ww = c̃zz +
2g2

Y

g2
L + g2

Y

c̃zγ +
g4
Y

(g2
L + g2

Y )2
c̃γγ,

cw� =
1

g2
L − g2

Y

[
g2
Lcz� + g2

Y czz −
g2
Y (g2

L − g2
Y )

g2
L + g2

Y

czγ −
g2
Lg

4
Y

(g2
L + g2

Y )2
cγγ

]
,

cγ� =
1

g2
L − g2

Y

[
2g2

Lcz� + (g2
L + g2

Y )czz − (g2
L − g2

Y )czγ −
g2
Lg

2
Y

g2
L + g2

Y

cγγ

]
. (5.5)

5.3 Higgs self-interactions

The Higgs boson self-interactions take the form

L ⊃ −λv (1 + δλ3)h3 − λ

4
(1 + δλ4)h4 − λ5

λ

v
h5 − λ6

λ

v2
h6, (5.6)

where δλ3 is one of the Wilson coefficients in the Higgs basis, and the remaining EFT
parameters can be expressed by the Wilson coefficients as

δλ4 = 6δλ3 −
4

3
δcz, λ5 =

3

4
δλ3 −

1

4
δcz, λ6 =

1

8
δλ3 −

1

24
δcz. (5.7)
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5.4 Gauge interactions

The gauge interactions have the form

L ⊃ − gLgY√
g2
L + g2

Y

Aµ
∑

f∈u,d,e

Qf f̄γµf − gsGa
µ

∑
f∈u,d

f̄γµT
af,

− gL√
2

(
W+
µ ν̄Lγµ(I + δgW`

L )eL +W+
µ ūLγµ(VCKM + δgWq

L )dL +W+
µ ūRγµδg

Wq
R dR + h.c.

)
−

√
g2
L + g2

YZµ

[ ∑
f∈u,d,e,ν

f̄Lγµ(T 3
f − s2

θQf + δgZfL )fL +
∑

f∈u,d,e

f̄Rγµ(−s2
θQf + δgZfR )fR

]
,

(5.8)

where all the departures from the SM couplings are parametrized by the vertex cor-
rections δgV f . Note that, by construction, there are no vertex corrections to photon
and gluon couplings. Most of the vertex corrections are Wilson coefficients of the Higgs
basis, as defined in Section 2. The remaining EFT parameters can be expressed by the
Wilson coefficients as

δgZνL = δgW`
L + δgZeL ,

δgWq
L = V †CKMδg

Zu
L VCKM − δgZdL . (5.9)

5.5 Dipole interactions

The dipole-type interactions take the form

L ⊃ −1 + h/v

4v

[
gs
∑
f∈u,d

√
mfImfJ

v
f̄IσµνT

a[dGf ]IJPLfJG
a
µν

+
gLgY√
g2
L + g2

Y

∑
f∈u,d,e

√
mfImfJ

v
f̄Iσµν [dAf ]IJPLfJAµν

+
√
g2
L + g2

Y

∑
f∈u,d,e

√
mfImfJ

v
f̄Iσµν [dZf ]IJPLfJZµν

+
√

2gL

√
muImuJ

v
ūIσµν [dWu]IJPLdJW

+
µν +

√
2gL

√
mdImdJ

v
d̄Iσµν [dWd]IJPLuJW

−
µν

+
√

2gL

√
meImeJ

v
ēIσµν [dWe]IJPLνJW

−
µν + h.c.

]
, (5.10)

where σµν = i
2

(γµγν − γνγµ), and dGf , dAf , dZf , and dWf are complex 3 × 3 matrices.
Out of these, dGd, dAf , and dZf are already Wilson coefficients of the Higgs basis, as
defined in Section 2. The remaining dipole parameters can be expressed by the Wilson
coefficients as

ηfdWf = dZf +
g2
Y

g2
L + g2

Y

dAf , (5.11)

where ηu = +1, ηd,e = −1.
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5.6 Contact Higgs-gauge-fermion interactions

The contact Higgs-gauge-fermion interactions have the form

L ⊃ −
√

2gL

(
h

v
+

h2

2v2

)(
W+
µ ν̄Lγµδg

W`
L eL +W+

µ ūRγµδg
Wq
L dR +W+

µ ūRγµδg
Wq
R dR + h.c.

)
− 2

√
g2
L + g2

Y

(
h

v
+

h2

2v2

)
Zµ

[ ∑
f∈u,d,e,ν

f̄Lγµδg
Zf
L fL +

∑
f∈u,d,e

f̄Rγµδg
Zf
R fR

]
.

(5.12)

The EFT parameters describing these interaction are completely fixed by the vertex
corrections discussed in the previous subsection.

5.7 Triple gauge couplings

The triple gauge couplings of electroweak gauge bosons are customarily parametrized
as [14]

L ⊃ −i gL√
g2
L + g2

Y

{
gY
(
W+
µνW

−
µ −W−

µνW
+
µ

)
Aν + gLg1,z

(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν

+ gY κγW
+
µ W

−
ν Aµν + gLκzW

+
µ W

−
ν Zµν + gY κ̃γW

+
µ W

−
ν Ãµν + gLκ̃zW

+
µ W

−
ν Z̃µν

+
λγgY
m2
W

W+
µνW

−
νρAρµ +

λzgL
m2
W

W+
µνW

−
νρZρµ +

λ̃γgY
m2
W

W+
µνW

−
νρÃρµ +

λ̃zgL
m2
W

W+
µνW

−
νρZ̃ρµ

}
.

(5.13)

Above, only λz and λ̃z are Wilson coefficients in the Higgs basis, as defined in Section 2.
The remaining EFT parameters can be expressed by the Wilson coefficients as

g1,z = 1 +
1

2(g2
L − g2

Y )

[
−g2

L(g2
L + g2

Y )cz� − g2
Y (g2

L + g2
Y )czz + g2

Y (g2
L − g2

Y )czγ +
g2
Lg

2
Y

g2
L + g2

Y

cγγ

]
,

κz = 1 +
1

g2
L − g2

Y

[
−g

2
L(g2

L + g2
Y )

2
cz� − g2

Lg
2
Y czz +

g2
Lg

2
Y (g2

L − g2
Y )

g2
L + g2

Y

czγ +
g4
Lg

4
Y

(g2
L + g2

Y )2
cγγ

]
,

κγ = 1 +
g2
L

2

[
czz −

g2
L − g2

Y

g2
L + g2

Y

czγ −
g2
Lg

2
Y

(g2
L + g2

Y )2
cγγ

]
,

κ̃γ =
g2
L

2

[
c̃zz −

g2
L − g2

Y

g2
L + g2

Y

c̃zγ −
g2
Lg

2
Y

(g2
L + g2

Y )2
c̃γγ

]
,

κ̃z = −g
2
Y

2

[
c̃zz −

g2
L − g2

Y

g2
L + g2

Y

c̃zγ −
g2
Lg

2
Y

(g2
L + g2

Y )2
c̃γγ

]
,

λγ = λz, λ̃γ = λ̃z. (5.14)

One can verify that these expression lead to the usual dimension-6 SMEFT relations

between the triple gauge couplings: κz = g1,z −
g2Y
g2L

(κγ − 1), κ̃z = −g2Y
g2L
κ̃γ.
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5.8 Double Higgs couplings to matter

The interactions between two Higgs bosons and two other SM fields are given by

L ⊃ h2

{(
1 + δc(2)

z

) g2
L + g2

Y

8
ZµZµ +

(
1 + δc(2)

w

) g2
L

4
W+
µ W

−
µ

− 1

2v2

∑
f

√
mfJmfK

[
f̄J [y

(2)
f ]JKPLfK + h.c.

]
+

1

8v2

[
c(2)
gg g

2
sG

a
µνG

a
µν + c̃(2)

gg g
2
sG

a
µνG̃

a
µν

]
+

1

8v2

(
2c(2)
wwg

2
LW

+
µνW

−
µν + c(2)

zz (g2
L + g2

Y )ZµνZµν + 2c(2)
zγ gLgYZµνAµν + c(2)

γγ

g2
Lg

2
Y

g2
L + g2

Y

AµνAµν

)
+

1

8v2

(
2c̃(2)
wwg

2
LW

+
µνW̃

−
µν + c̃(2)

zz (g2
L + g2

Y )ZµνZ̃µν + 2c̃(2)
zγ gLgYZµνÃµν + c̃(2)

γγ

g2
Lg

2
Y

g2
L + g2

Y

AµνÃµν

)
+

1

2v2

(
g2
Lc

(2)
w�(W+

µ ∂νW
−
µν +W−

µ ∂νW
+
µν) + g2

Lc
(2)
z�Zµ∂νZµν + gLgY c

(2)
γ�Zµ∂νAµν

)}
. (5.15)

The parameters above are related to the Wilson coefficient in the Higgs basis as

δc(2)
z = 4δcz, δc(2)

w = 4δcz + 6∆,

[y
(2)
f ]JK = 3[δyf ]JK − δcz δJK ,
c(2)
vv = cvv, c̃(2)

vv = c̃vv, v ∈ {g, w, z, γ},
c

(2)
v� = cv�, v ∈ {w, z, γ}, (5.16)

where the expression of cww, c̃ww, cz� and cγ� in terms of the Higgs basis Wilson coeffi-
cients are given in Eq. (5.5).

6 Discussion

We close this note with a number of scattered comments.

• Using Warsaw or Higgs basis is totally a matter of convenience, and leads to fully
equivalent results at O(1/Λ2) in the EFT expansion. One can verify these state-
ments for any particular process, by calculating it in both bases, and comparing
the results using the map in Eq. (2.1). Moreover, using the Higgs basis with the
Lagrangian in Section 3, or the one with redefined field and couplings in Section 5
leads to the same results at O(1/Λ2).

• The Higgs basis is designed to be convenient for the characterization of Higgs
processes at the LHC. It does not mean it is convenient for any application. One
counterexample is the diboson production. In the Higgs basis, the cubic CP-even
electroweak gauge couplings are described by five parameters czz, czγ, cγγ, cz�, and
λz, see Eq. (5.14). In diboson analyses it is more convenient to use the standard
TGC parametrization in terms of g1,z, κγ and λz, and only a-posteriori translate
the results to the Higgs basis using Eq. (5.14). One could in fact construct another
basis, call it Higgs-TGC basis, where δg1,z ≡ g1,z−1 and δκγ ≡ κγ−1 are defined as
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Wilson coefficients, at the expense of two Wilson coefficients from the original Higgs
basis, e.g. czz and cz�. Similarly, for the analysis of h→ WW ∗ analysis alone, one
would rather use the δcw, cww, c̃ww, cw� variables, and only later translate to the
Higgs basis using Eq. (5.5). Again, for this purpose one could also construct a new
basis, call it Higgs-WW basis, where δcw, cww, c̃ww, cw� are the Wilson coefficients,
at the expense of e.g. δcz, czz, c̃zz, cz�.

• To reduce the number of free parameters in a SMEFT analysis of Higgs observables
one may take advantage of the fact that some combinations of Wilson coefficients
are strongly constrained by other precision measurements, notably by the elec-
troweak data from LEP-1. A nice feature of the Higgs basis is that it separates
the Wilson coefficients affecting only the Higgs observables at tree level (the ones
in Eq. (2.3)) from those affecting also electroweak precision measurements and
thus being strongly constrained (the ones in Eq. (2.5)). In particular, all leptonic,
bottom and charm vertex corrections δg are constrained at a level of 10−2 or bet-
ter [15]. The current experimental sensitivity at the LHC not sufficient to probe
the effect of these vertex corrections on the Higgs observables, thus for all practical
purpose one can simply set these δg to zero when analyzing the LHC Higgs data.
Similarly, δmw is very strongly constrained by W mass measurements, and thus
can be set to zero. This greatly reduces the number of Wilson coefficients that a
typical Higgs analysis has to deal with.

• Some caution regarding the point above has to be exercised, however. First, not
all vertex corrections and dipole couplings have been strongly constrained by prior
non-Higgs measurements. For example, the vertex corrections to the Ztt̄ couplings,
δgZtL,R, for obvious reasons are not constrained by LEP-1, and thus they should not
be neglected whenever they contribute to Higgs observables. Moreover, for some of
the observables the effect of strongly constrained parameters may be amplified at
the LHC. One such case was identified in [16]. In the case of diboson production at
the LHC, the effect of the light quark vertex correction is enhanced by the factor
s/v2 at high invariant diboson mass

√
s, as is not negligible.

A Notation and conventions

This appendix discusses notation and conventions used in this note. Note that some
of the conventions are changed as compared to Refs. [4, 11] in order to match those of
WCxf [10].

The gauge couplings of the SU(3)C × SU(2)L × U(1)Y group are denoted by gs, gL,
gY , and the corresponding gauge fields by Ga

µ, W i
µ, Bµ, a = 1 . . . 8, i = 1 . . . 3. The

covariant derivatives read 4

Dµf =
(
∂µ + igsG

a
µT

a
f + igLW

i
µT

i
f + igY YfBµ

)
f. (A.1)

Consequently, the covariant field strength tensors are expressed by the corresponding

4Note the sign difference with respect to [4, 11].
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gauge fields as

Bµν = ∂µBν − ∂νBµ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gLεijkW j
µW

k
ν ,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν . (A.2)

where εijk and fabc are the totally anti-symmetric structure tensors of SU(2) and SU(3).
The fermions and Wilson coefficients of fermionic operators in SMEFT Lagrangian

are given in a particular flavor basis . Namely, the basis is chosen such the fields
PRuJ , PRdJ , PReJ and PLLJ = (PLνJ , PLeJ) are mass eigenstates after electroweak
symmetry breaking. Furthermore, the left-handed quark doublets are given by qJ =
([V †CKM]JKPLuK , PLdJ), where PLuJ , PLdJ mass eigenstate after electroweak symmetry
breaking.5 Note that the definition mass eigenstates may not be RG invariant in the
presence of higher-dimensional operators. By conventions, we choose that we work with
mass eigenstates defined by the Lagrangian at the scale µ = mZ .

Repeated Lorentz indices µ, ν, . . . are implicitly contracted using the Lorentz tensor
ηµν = diag(1,−1,−1,−1). Similarly, repeated generation indices I, J,K, as well as
repeated group indices i, j, k, a, b, c are implicitly summed over.

The components of the Higgs double field ϕ are parametrized as

ϕ =
1√
2

(
i
√

2Ĝ+

v̂ + ĥ+ iĜz

)
, (A.3)

where v̂ is the Higgs VEV, ĥ is the Higgs boson field, and Ĝ are the unphysical Goldstone
boson fields.

The SMEFT Lagrangian is given by

LSMEFT = LSM +
∑
i

CiQi, (A.4)

where LSM is the SM Lagrangian, and Qi form a basis of dimension-6 operators. The
Wilson coefficients Ci have dimensions [mass]−2 and they count as O(Λ−2) in the EFT
expansion. We ignore dimension-5 operators, as well as any effects subleading to O(Λ−2)
(thus in particular, order C2

i effects are ignored). We work with the dimension-6 oper-
ators in the so-called Warsaw basis [2]. In the original reference the flavor structure of
the operators was not specified. For that, we follow the notation and conventions estab-
lished by the Wilson coefficient exchange format (WCxf) [10]. We also apply the WCxf

convention that all components of ~CWB have dimension 1/mass2 (thus, the SMEFT scale
Λ, often displayed explicitly in the literature, is absorbed into Ci here).
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