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0. Introduction 

The present document outlines a proposal for a wide-range study of detector optimization, using machine 
learning technology for the optimization of the design, and targeting the future capabilities of specialized 
artificial intelligence technology for the event reconstruction. While in the text below we mostly make use of 
HEP examples to clarify the goals of the program and its possible deliverables, much of the research is equally 
of benefit for any effort of detector design for a future experiment in astro-particle physics, muography, or 
high-energy nuclear physics, which share the physics of the interaction of radiation with matter and the 
technology of its measurement, as well as the issues connected with the optimized extraction of the relevant 
information, which in the future will necessarily be based on specialized artificial intelligence systems. Because 
of this common ground, we believe that this expression of interest should be considered by the JENAS 
community as a way to create a proficuous bridge between scientists working in the three areas of interest. 

 

1. Background 

1.1 An unshaken paradigm 

In the course of the past half century, particle detectors used by fixed target and then collider experiments 
have benefited from incremental as well as paradigm-shifting advances in detector technology. As an example 
of the former, one may cite the progress in construction technology, operation and readout of wire chambers; 
as an example of the latter, the introduction of thin silicon sensors for trackers stands out. In contrast with 
these advancements, a striking observation is the standing paradigm connected to the philosophy of how a 
stream of particles should be detected and measured: this has mostly remained unchanged across many 
decades.  

We can summarize the paradigm with the sentence “track first, destroy later”: since charged particles can be 
traced in low-material detection elements such as gaseous devices, while neutral particles such as neutrons, 
photons, and neutral kaons usually require destructive interactions in a calorimeter if one is to measure their 
energy, the no-brainer setup has always involved a low-material tracker followed by a thick calorimeter. All the 
detectors constructed for large particle physics experiments, but also –with differences due to their special 
constraints –in astro-particle and high-energy nuclear physics experiments, have so far duly complied with it. 
Further, the need for effective detection and measurement of muons as important probes of electroweak 
processes has invariably led to the addition, externally to the calorimeter systems, of muon-optimized detector 
layers, profiting of the high penetration power of those particles, and usually exploiting for additional 
momentum measurements the return flux of the internal magnets used to bend charged particles in the 
tracker.  

1.2 Pile-up at the LHC and countermeasures 

Indeed, the complexity of high-energy collision events in environments such as the one of pp or heavy ion 
collisions at the LHC, today made worse in the former case by the high pile-up of hundreds of near-
simultaneous collisions, are making the requirement of thin trackers even more compelling, if anything: 



unwanted nuclear interactions in the material make the reconstruction of charged particles trajectories harder. 
While machine learning algorithms have been summoned to ease the resulting complex reconstruction tasks, 
the obtained results are so far still wanting. In the meantime, the need for a 4-dimensional measurement of 
particle ionizations to disentangle pile-up and primary interaction particles has emerged quite clearly, and 
consequently, ATLAS and CMS are both getting equipped with timing layers for their phase-II upgrades.  

1.3 Hadron calorimetry and jet substructure needs 

A different, and partly unexpected, recent input concerns the optimal design of hadron calorimeters. The 
apparently “simple” task of collectively measuring the energy of jets of hadrons, and the original lack of tight 
requirements for the spatial resolution of the components of hadronic showers in the medium, led designers of  
past or present experiments to invest a relatively smaller fraction of their total budgets in the construction of 
those devices. That status quo has been shaken to the roots during the past decade by the rise of jet 
substructure studies, which have shown how electroweak decays of heavy objects (top quarks, W and Z 
bosons, Higgs bosons) can be effectively sorted out of the competing QCD backgrounds in very high-energy 
jets, thus opening the way to completely revolutionized ways to look for new physics signatures at the very 
high end of the investigated energy spectrum. Nowadays, high granularity has become a compelling 
requirement for a hadron calorimeter at a particle collider. The CMS HGCAL detector for the LHC Phase 2 is an 
example of a step in that direction, and its design will certainly improve by a large margin the amount of usable 
information about the showers, their development, pointing, and composition. Other similar examples (CALICE 
for ILC, CaloCube, the SHIP experiment, to which A. Ustyuzhanin participates) exist. Another detector which is 
being built with these ideas in mind is the LHCb calorimeter for the LHC phase-2 upgrade, where D. Derkach is 
giving significant contribution with an intensive optimization with machine learning techniques using fast 
simulation of the apparatus. One thing to note is that in general these designs, while highly improving the 
situation, have not been optimized for machine-learning-powered reconstruction.  

When discussing present-day calorimeters, a note has to be made concerning CMS. Originally endowed with a 
hadron calorimeter of lesser performance than the corresponding one of the competing ATLAS experiment, 
CMS regained most of the lost ground by exploiting a very performant “particle flow” reconstruction algorithm. 
This has been only possible thanks to the high field integral of the inner CMS tracker, which allows particles of 
different momenta to be “sorted out” by the strong bending. This kind of use of the strong 4-Tesla field, 
originally rather conceived for compactness of design and high performance of the momentum measurement, 
is an example of how complex the optimization of a modern particle detector can be, even in the absence of 
the elephant in the room, machine learning. In that case, the redundancy and strong points of CMS as a whole 
came to the rescue, thanks to sophisticated new software. But planning ahead for such resilience seems 
mandatory in the future. In fact, the already mentioned HGCAL project is explicitly accounting for the 
exploitation by the particle flow algorithm.  

1.4 Muon energy measurements at the TeV scale 

The R&D of highly-granular calorimeters has further shown –incidentally, also thanks to the application of 
machine learning in reconstruction of the detected signals– that a sufficiently precise measurement of the 
longitudinal energy deposition in a high-spatial resolution device can become an effective means of measuring 
the energy of TeV-range muons, inferring it from the amount of radiation loss they withstand. In that regime, 



magnetic bending fails to provide a similar performance. It appears very interesting, therefore, to investigate 
how the measurement of very high-energy muons can be optimized by the targeted detection of soft photons 
emitted by muons interacting with the thick medium of a calorimeter, by considering designs that allow that 
information to be extracted with success. 

 

2. Machine learning, the elephant in the room 

2.1 Generalities 

Machine learning (ML) is ubiquitous, and has redefined performance in a number of human activities and 
technologies, and reshaped the way we think about optimization. However, in high-energy physics the 
application of ML-driven solutions to analysis problems has caught up rather slowly, due to a general 
skepticism of the use of “black boxes” as the algorithms of choice for the very common classification or 
regression tasks in measurements and searches. As an example, while already in 1989 the first proposals for 
application of artificial neural networks in hadron collider searches were put forth at the Tevatron, it took over 
a decade for these tools to become a routinely used tool in particle physics analyses. Algorithms such as 
Random Forests, Boosted Decision Trees, and in particular Neural Networks, also in their “deep” form, have 
operated a paradigm shift, by improving the performance of our measurements by large amounts. Nowadays 
the old standard cut-and-count analysis for a new physics search is usually considered, at most, as a cross-
check to a more advanced ML-powered one.  

2.2 Innovation 

The next step of embracing this new technology for fundamental physics research should be obvious: allow 
machines to inform the design of future detectors. What is at stake is the real meaning we give to the word 
“optimization”. If we construct today a serious plan of R&D aimed at the design of a detector which will 
operate, say, at a future hadron collider 30 years from the time of writing, we cannot omit to consider the 
elephant in the room. The reason is simple. When we optimize the sensors for a tracking device, when we 
choose layouts for the cells of a calorimeter, when we operate choices on budget allocation for the different 
components, when we define requirements for the various resolutions of detection elements, we are trying to 
optimize hundreds, if not thousands, of independent variables in a vastly under-constrained space, and the 
task is clearly super-human. Worse still, we are usually trying to optimize against the wrong cost function, as 
we short-cut our goals to be “achieve highest resolution for isolated photons”, e.g., forgetting about the rest of 
the parameter space: while we want our target to be “the highest precision on the Higgs boson self-coupling 
that available funds can buy”, we have no precise idea of what compromises between the various design 
choices could reach the desired result, so we stick to past experience –e.g., high photon resolution will bag us a 
better identifiable Higgs decay signal– thus ignoring how vastly different is the actual challenge. The result is a 
potentially enormous performance loss. It is worth pointing out that the inclusion of the cost of detector 
components in a complete cost function is a very complex problem, but if successfully performed it gives 
access to a Pareto optimal boundary, which gives the management the power to make more realistic choices 
on the overall design. 



The innovative character of the proposed plan –the one of achieving a true and complete Pareto optimization 
of our detector design– should at this point be obvious. But there is one further step we have to take to see 
how important it is to change the way we think at optimization. It is easy to predict that if machine learning is 
already with us today, in 30 years it will look prehistoric to reconstruct charged particle trajectories with, e.g., a 
presently advanced tool such as a pixel-seeded Kalman filter. While it is hard to foresee exactly how deep and 
wide will the use of ML tools be in particle reconstruction, it is quite reasonable to expect that the task of 
extracting high-level variables from the millions of readout channels of the detector components will be 
entirely commanded by deep neural networks. And the view that those artificial algorithms have at the 
reconstruction task is sufficiently different from ours to beg us to pause and rethink the whole system. 

2.2 Design strategy 

Is it reasonable to design a detector without considering how the relevant information will be extracted from 
its readouts? Of course it is not. Hence, we must start the R&D for a future detector – be it for a HEP, an astro-
HEP, or a Heavy ions application all set in the future – by trying to attack the problem in a different way. The 
idea is to rethink at the layout of detection elements (initially based on present-day technology), such that they 
produce the best result on some well-thought-over, high-level goals, once all nuisance parameters affecting the 
measurements are incorporated in the equation, and once we model in a suitable way the different 
reconstruction capability ML tools can achieve on the task. What this means is that a set of DNNs, tasked with 
providing  answers as independent as possible, must be constructed, and their weights and biases learned, 
from simulated data coming from a continuously varying set of detector designs and layouts, reaching out to 
ones starkly in contrast with accepted design paradigms. In other words, there is a highly multi-dimensional 
space of parameters defining our design choices to investigate, and we must walk out of the local minimum 
determined by our preconceived notion of “track first, destroy later”. 

Crucially, the DNNs must contain very elaborate loss functions at their core, which are as precisely connected 
to our final goals (precision of measurement of some fundamental parameters, discovery reach for a broad set 
of new physics signatures) as possible, while accounting as well as possible for the systematic uncertainties 
affecting the measurements in program. In section 3 below a few examples are given of studies we want to 
undertake in this context. 

A seminal study which exemplifies how today’s software frameworks, specialized programming languages 
(python) and ML-design tools (Keras, TensorFlow) allow the construction of neural networks capable of solving 
similarly complex tasks, is an open-access article recently appeared in Computer Physics Communications (also 
available as computer code in GitHub and as an arXiv preprint1). The algorithm described in the reference 
(INFERNO, from “inference-aware neural optimization”) demonstrated how large improvements in the 
measurement precision of a parameter can be achieved when the loss function of the NN (see Fig. 1) 
incorporates the effect on the measurement of nuisance parameters – which “NN optimization” tasks in HEP 
measurements so far have neglected to include, suffering quite significant performance losses. More to the 
point, the algorithm demonstrates that such a global, and true, optimization can at all be achieved. 

                                                           
1 P. de Castro Manzano, T. Dorigo, “INFERNO: Inference-Aware Neural Optimization”, Comp. Phys. Commun. 244 (2019) 
170; Arxiv:1806.04743v2, June 2018. 



 

Figure 1: control flow of the INFERNO algorithm, which extracts optimized configuration for a neural network, 
such that the resulting measurement is maximally robust to the effect of nuisance parameters. 

 

3. Tasks and Deliverables 

3.1 Outlook 

The research program sketched above is obviously quite ambitious, and because of its wide range is, we 
believe, beyond the scope that any individual R&D  project can encompass. What we are interested to start is a 
pilot study targeting a few specific, well contained questions of interest to a wide range of experimental 
endeavours, with a methodology which is however perfectly scalable to a grander goal of full-scale 
optimization for a future detector at a big experiment (such as the FCC-hh, for example). The ingredients are 
fast simulation of physics processes of interest (MADGRAPH, PYTHIA for collider physics, e.g.), state-of-the-art 
tools of detector simulation (DELPHES, GEANT4, FLUKA) applied multiple times to the same generated events in 
order to tame the stochastic nature of detector response, and advanced ML programming in auto-diff 
frameworks (KERAS, PYTORCH, TENSORFLOW) to sew together the inputs and the desired outputs in a full 
optimization chain. The methodology is a systematical comparison of performance of very different layouts of 
detection elements of present-day availability, when the metric is the measurement precision on an initially 
narrow selection of fundamental physics parameters (e.g., the Higgs boson branching fractions) when the 
accounting of all significant nuisance parameters potentially affecting their estimate is included. Extrapolation 
to the performance of DNN reconstruction on the considered layouts will be enabled by the benchmarking of 
selected deep-learning results on a narrow set of tasks. The focus will initially be the construction of a software 
framework similar to the one of the INFERNO algorithm, adapted to the broader task of considering the 
detector geometry parameters as members of the feature space together with the unknowns systematically 
affecting the considered measurements. Results should be provided in the form of specific guidelines informing 
the most promising geometry, layouts, and choices of detection technology. These will initially be a narrow set 
of inputs, eventually scalable to the ultimate aim of shaping the design of a fully optimized future detector. 



3.2 Deliverables 

3.2.1 Hybridized tracking and calorimetry 

The success of the CMS particle flow algorithm, which exploits to some degree the information on the identity 
of particles generating hits and energy deposits (e.g. photons vs neutral pions or charged hadrons), is a 
motivation for a broad study of the benefit that a hybrid design of longitudinally overlapping tracker and 
calorimeter system may obtain. Nuclear interactions, if properly identified, can provide some degree of particle 
ID information which a powerful algorithm can exploit, as well as detailed extrapolation to the adjacent 
calorimeter deposits (both upstream and downstream). While complex, an extension of the tracking of 
particles inside the depth of the calorimeter system can be achieved with specialized machine learning 
reconstruction tools, if the detector layout provides the required information. Silicon-based calorimetry is an 
ingredient of this plan, but it is not the only one, as more diversified technologies can better inform the ML-
driven extraction of information.  

Besides publications in refereed journals, the main deliverable for this task can be defined in the form of 
selected response functions over geometry space, parametrizing the resolution of specific quantities of interest 
once a full reconstruction is performed, including the effect of selected systematic uncertainties. As an 
example again taken from collider physics, one such quantity of interest may be defined as the uncertainty in 
the cross section of boosted hadronic vector boson decays in a sample extracted from  measurements of the 
invariant mass of boosted jets, accounting for detector-related (jet energy scale and resolution) uncertainties 
as well as simulation-related (PDF, detector simulation parameters) uncertainties.   

3.2.2 Muon energy resolution from radiative losses 

As mentioned in Sec. 1.4, it has become evident how the radiative loss of high-energy muons can be exploited 
to determine their energy better than what the bending of their track can achieve, if the loss is measured with 
a suitably designed calorimeter, sporting sufficient longitudinal granularity and the most effective detection 
elements. In this task, which may be of interest for both HEP and Heavy Ion physics applications, the 
observability of a signal of interest, such as e.g. that of a boosted Higgs boson decay to muon pairs, is studied 
as a function of the geometry of a calorimeter where finely segmented but conventional hadronic sections are 
alternated with suitably designed electromagnetic detection elements employing the most promising detection 
technology for radiation photons in the energy range of interest. The optimization of the design will 
simultaneously take into account the performance of the calorimeter to measure with high precision boosted 
decays of W, Z, and H bosons similarly to what is mentioned in Sec. 3.2.1, by constructing a loss function which 
combines the two research goals.  

The main deliverable associated with this task can be formulated as an optimal longitudinal segmentation and 
identity of the layers of the calorimeter, targeting the above physics cases, together with a map of the 
performance loss as a function of the variation from the optimal design.  

 

 



4. Participants  

The institutions listed above (INFN, UCLouvain, UCA, HSE) share an interest in investigating the issues discussed 
in the previous sections. We are in the process of creating a network to share our expertise and organize the 
work for a first attack at the giant task we have set out for ourselves. We would be very happy to coalesce a 
much larger group around this task. 

 

INFN-Padova (INFN) includes 

Dr. Tommaso Dorigo (First Researcher at INFN)  

Dr. Mia Tosi (INFN associate and type-A Researcher at University of Padova)  

Prof. Roberto Rossin (INFN associate and Associate Professor at University of Padova)  

Dr. Giles Chatam Strong (INFN associate and post-doctoral scientist at University of Padova) 

Dr. Hevjin Yarar (INFN associate, Ph. D. student at the University of Padova) 

The INFN personnel has ample experience with ML applications in HEP and detector simulation and design.  

 

Université catholique de Louvain (UCLouvain) includes 

Dr. Andrea Giammanco (Maitre de Recherches FNRS)  

Dr. Pietro Vischia (Post-doctoral fellow at UCLouvain)  

Prof. Christophe Delaere (Maitre de Recherches FNRS and associate professor at UCLouvain)  

Mr. Hesham el Faham (Ph. D. student at UCLouvain) 

All UCLouvain researchers have wide experience with detector simulation, having also developed a fast-
simulation package (DELPHES) which will be useful for this project, as well as expertise with ML applications; 
they are also pursuing studies of muography for which detector optimization is an important issue.  

 

Université Clermont-Auvergne (UCA) includes  

Prof. Julien Donini (Full Professor) 

Dr. Djamel Boumediene (CNRS Researcher) 

The UCA personnel has experience in ML-driven detector design also within the CALICE collaboration, which is 
pioneering some advanced studies in this direction, and with which we foresee possibilities of useful 
cooperation. 



 

National Research University Higher School of Economics (HSE), a partner located in Moscow, Russia, 
associated to YANDEX, will participate to the project offering secondments to the hired post-doctoral scientists, 
under the supervision of Dr. Denis Derkach (senior researcher at the laboratory of methods for big data 
analysis). In addition, Dr. Derkach and Prof. Ustyuzhanin have large experience in the topic, and have 
pioneered studies of detector design for LHCb and SHIP with machine learning. 

 

5. Summary 

The design of the geometry and layout of a future detector for, e.g., a higher-energy hadron collider, a new 
heavy ion facility, a muon collider, or a future space experiment, cannot avoid considering the paradigm-
shifting potential of applied artificial intelligence in the reconstruction of particle signals. We propose to start 
an investigation of the potential gains in physics reach achievable with a full ML-driven optimization of the 
detector hyper-parameters, performed with deep learning technologies. This optimization must account for 
the scenario wherein such a device will operate – one in which automated extraction of high-level event 
features will be executed by ML algorithms; as well as focus specifically on the final goals of the experiment 
(precision of measurement of fundamental physics parameters, discovery reach in parameter space of new 
physics theories) factoring in production costs, rather than targeting intermediate and abstract goals which 
unavoidably lead to sub-optimality. While this is an obviously overambitious goal, we believe that a pilot study 
that lays down all the necessary software technologies while attacking a small set of well-contained questions 
will constitute a compelling step in the right direction.  

The innovative potential of this project should be obvious, as we plan to demonstrate cutting-edge techniques 
in the optimization of detector design, extrapolating our reconstruction capabilities to levels presently still not 
achieved. The demonstrated gains of such an end-to-end optimization approach should become an asset for a 
wide range of future experiments across different fields of research which all employ particle detection as the 
source of the information on the physical processes they study. 

  

For the proponents 

Tommaso Dorigo 


