

Study of Resonance Production at ALICE

Ayben Karasu Uysal*, Serpil Yalcin Kuzu

KTO Karatay University (for the ALICE Collaboration)

Webinar on PINSTECH-CERN Collaboration 5 August, 2020

OUTLINE

oIntroduction

- Resonances
- Motivation: What do we learn from resonances?
- oALICE: A Large Ion Collider Experiment
- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_{T}
 - Particle Ratios
 - Nuclear Modification Factor

OSummary

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- o Summary

Introduction: Resonances

- Resonances are extremely short lived particles. ($\tau_{resonance} \sim \tau_{fireball}$)
- Due to this short lifetime they may decay between chemical and kinetic freeze-outs.

In heavy ion collisions:

→ the stage at which the particle species are fixed (no further inelastic interactions between hadrons) is called *chemical freeze-out*.

 \rightarrow the stage at which the mean free path of hadrons beat the dynamical size of the system and stream freely (no further elastic interactions between hadrons) is called <u>kinetic freeze-out</u>.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- o Summary

Introduction: Resonances

- The medium may modify their properties as mass, yield and width.
- From partonic state to hadronic state resonances may
 - decay,
 - re-scatter,
 - regenerate.

Regeneration: resonance reproduction in hadronic phase by pseudo-inelastic interactions with hadrons in the medium.

→ Enhancement of the resonance yield

Re-scattering: Elastic scattering or pseudoelastic scattering of resonance decay products with hadrons in the medium.

- → Resonance can not be reconstructed (*lost resonance signal!*)
- \rightarrow Reduction of the resonance yield

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_τ

- Particle Ratios
- Nuclear Modification Factor
- o Summary

Motivation: Why resonances?

- Decay between chemical and kinetic freeze-outs
 - \rightarrow information on hadronization.
- Particle ratios, yield and mean p_T
 - → hint of rescattering and regeneration effects in the hadronic phase.
- Nuclear modification factors
 - → information about energy loss mechanism in the medium.
- Study on the mass and width

 \rightarrow interactions of the resonances with the medium.

- Comparison of resonance production in different collision systems
 - \rightarrow provide evidences for in-medium effects.

Resonances	τ(fm/c)	Decay	BR(%)
ρ(770) ⁰	1.3	ππ	100
K [*] (892) ⁰	4.2	Κπ	66.6
Σ(1385) [±]	5.5	Λπ	87
Λ(1520)	12.6	рК	22.5
Ξ (1530) ⁰	21.7	Ξπ	66.7
φ(1020)	46.4	КК	49.2

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_τ

- Particle Ratios
 - Nuclear Modification Factor
- Summary

ALICE:A Large Ion Collider Experiment

			41 countr	ies, 176 instit	utes, more tha	n 1800 members
		Collision System	Pb-Pb	Xe-Xe	p-Pb	pp
	e san a	Year(s)	2010-2011 2015, 2018	2017	2013 2016	2009-2013 2015-2018
199		√s _{nn} (TeV)	2.76 5.02	5.44	5.02 8.16	0.9, 2.76, 7, 8 5.02, 13

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_T

- Particle Ratios
 - Nuclear Modification Factor
- Summary

ALICE: A Large Ion Collider Experiment

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra

,,,,,,,,,,,

TPC

- Integrated yields
- Mean p_T

- Particle Ratios
 - Nuclear Modification Factor
- o Summary

ALICE: A Large Ion Collider Experiment

- 10000 tons
- 16 m long
 16 m high
- 16 m wide

- primary vertex
- global tracking
- Particle identification via dE/dx in gas

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

OF

Spectra

TPC

- Integrated yields
- Mean p_T

- Particle Ratios
 - Nuclear Modification Factor
- o Summary

ALICE:A Large Ion Collider Experiment

- 10000 tons
- 16 m long
- 16 m high
 16 m wide

- Time Projection Chamber (TPC)
- primary vertex
- global tracking
- Particle identification via dE/dx in gas

Time Of Flight (TOF)

PID via time of flight measurement

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

OE

Spectra

TPC

- Integrated yields
- Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- o Summary

ALICE:A Large Ion Collider Experiment

Time Projection Chamber (TPC)

- primary vertex
- global tracking
- Particle identification via dE/dx in gas

VZERO Scintillator Detectors(V0)

- Centrality definition in Pb-Pb, Xe-Xe
- Multiplicity event class in pp and p-Pb

Time Of Flight (TOF)

PID via time of flight measurement

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- o Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

Decay products as π, K, p identified
 via PID detectors (TOF, TPC).

ALICE

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

- Decay products as π, K, p identified
 via PID detectors (TOF, TPC).
- Resonances are reconstructed by calculation of the invariant mass spectrum via the identified decay products.

 $m_{inv} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$

- Combinatorial background is identified by various techniques:
 - Like sign technique,
 - Mixed event technique.

PHYSICAL REVIEW C 95, 064606 (2017)

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

- Decay products as π, K, p identified
 via PID detectors (TOF, TPC).
- Resonances are reconstructed by calculation of the invariant mass spectrum via the identified decay products.

 $m_{inv} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$

- Combinatorial background is identified by various techniques:
 - Like sign technique,
 - Mixed event technique.
- Mass, width and yield values are extracted from the background subtracted spectrum.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_τ

- Particle Ratios
- Nuclear Modification Factor

pp at $\sqrt{s} = 2.76$ TeV

Summary

Spectra: K^{*}(892)⁰

Production of K*(892)⁰ in pp and Pb-Pb collisions.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_τ

- Particle Ratios
- Nuclear Modification Factor

pp at vs = 2.76 TeV

Summary

Spectra: (1020)

Production of φ(1020) in pp and Pb-Pb collisions.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
 - Nuclear Modification Factor
- Summary

Spectra: More K^{*}(892)⁰ and ϕ (1020)

Particle spectra is
 hardening from peripheral
 to central collisions for
 p_T< 5 GeV/c.

 Similar shape across multiplicity/collision centrality for p_T > 5 GeV/c.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields

Mean p_{T}

- Particle Ratios
- Nuclear Modification Factor
- Summary

Integrated Yields (dN/dy)

K^{*0} and φ:

 linear increase in dN/dy towards higher multiplicity.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- **Resonance Measurements in ALICE**
 - Spectra
 - Integrated yields

Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

Integrated Yields (dN/dy)

K^{*0} and φ:

 linear increase in dN/dy towards higher multiplicity.

For pp results

- K^{*0} described by EPOS-LHC and PYTHIA8 without CR (color reconnection) models.
 - **φ** a little overestimated by EPOS-LHC and underestimated by PYTHIA models. arXiv:1910.14397

ALICE

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
 - Nuclear Modification Factor
- Summary

Integrated Yields (dN/dy)

- ^δ **K^{*0} and φ:**
 - **linear increase** towards higher multiplicity.

Normalized yields of K^{*0} and φ to <dN_{ch}/dη> are independent of the collision system and the energy.

08/05/2020

ICI

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

Mean p_T (<*p*₇>)

- Spectra
- Integrated yields
- Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- o Summary

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

Mean p_τ (<*p*₇>)

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

08/05/2020

14

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

Particle Ratios

Resonance Measurements in ALICE

- Spectra
 - Integrated yields
 - Mean p_T

Particle Ratios

- Nuclear Modification Factor
- Summary

Significant suppression going from p-Pb and peripheral Xe–Xe/Pb–Pb collisions to most central Xe–Xe/Pb–Pb collisions.

Suppression in central Xe–Xe/Pb–Pb collisions interpreted as re-scattering is dominant over regeneration.

φ/K

- No significant system-size dependence.
- Due to its long lifetime ϕ yield is not affected as K^{*0}.

Nuclear Physics A, Volume 982, February 2019, Pages 427-430

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 Mean p_τ

- Particle Ratios
- Nuclear Modification Factor
- o Summary

Nuclear Modification Factor (R_{AA})

- **p_T > 8 GeV/c :** a strong suppression in most central Pb-Pb collisions for resonances and stable hadrons:
 - not dependent on hadron species and properties like mass, quark content or baryon number
- **p_T < 8 GeV/c :** Baryon-meson splitting
 - K^* , ϕ are closer to other mesons than to baryons

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- **Resonance Measurements in ALICE**
 - Spectra
 - Integrated yields
 Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

Nuclear Modification Factor (R_{AA})

- **p_T > 8 GeV/c :** a strong suppression in most central Pb-Pb collisions for resonances and stable hadrons:
 - not dependent on hadron species and properties like mass, quark content or baryon number
 - p_T < 8 GeV/c : Baryon-meson splitting</pre>
 - K^* , ϕ are closer to other mesons than to baryons
- Comparison of R_{AA} of K^{*0} in Xe–Xe and in Pb–Pb collisions for centrality classes with similar multiplicities:
 - no significant system size dependence.

Nuclear Physics A, Volume 982, February 2019, Pages 427-430

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

Mass and Width Study of Δ⁺⁺ Resonance

Δ++/Δ--

- Mass and width values are extracted from the fit.
- Mass values from data are shifted from the PDG value.
- Mass values from MC simulation overlaps with the PDG value.
- Width values from the simulation and the data are around the PDG value.
- Similar behavior is observed in p-Pb collision at 5.02TeV.

- Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_T

- Particle Ratios
- Nuclear Modification Factor
- Summary

Mass and Width Study of Δ⁺⁺ Resonance

Δ^{++}/Δ^{--}

- Mass and width values are extracted from the fit.
- Mass values from data are shifted from the PDG value.
- Mass values from MC simulation overlaps with the PDG value.
- Width values from the simulation and the data are around the PDG value.
- Similar behavior is observed in p-Pb collision at 5.02TeV.

- o Introduction
 - Resonances
 - Motivation
- ALICE: A Large Ion Collider Experiment

Summary

- Resonance Measurements in ALICE
 - Spectra
 - Integrated yields
 - Mean p_T

- Particle Ratios
 - Nuclear Modification Factor
- o Summary

Resonances are measured for different collision systems with ALICE at the LHC :

<u>K^{*0} and φ Spectra:</u>

- Shapes of p_T spectra are different for different multiplicity classes ($p_T < 5.0$ GeV/c),
- spectra become harder with increasing multiplicity.

Integrated Yield of K^{*0} and ϕ (dN/dy):

pp, p-Pb, Xe-Xe, Pb-Pb: Independent of colliding system, energy.

<u>Mean p_T:</u>

• In Pb-Pb and Xe- Xe : $< p_T >$ Values are in agreement.

Particle Ratios of K^{*0}/K and ϕ/K :

- Suppression of K*⁰/K in central Xe–Xe/Pb–Pb collisions is due to re-scattering is dominant over regeneration.
- φ/K is independent from system size.

Nuclear Modification Factor:

- In central Pb-Pb collisions resonances are strongly suppressed at high p_T .
- R_{AA} of K^{*0} in Xe–Xe and in Pb–Pb collisions for centrality classes with similar multiplicities showed no significant system size dependence.

Results support the existence of a hadronic phase: lasting long enough to cause a significant reduction of the reconstructible yield of short lived resonances.

Thank you!

This work is supported by TAEK under contract of 2019TAEK(CERN)A5.H1.F5-23.