

Electron-Cloud Simulations for the FCC-ee Collider Arcs and for the e+ Damping Ring

Fatih Yaman

Izmir Institute of Technology (IYTE) Dept. of Electrical and Electronics Eng.

July 10, 2020

Acknowledgments:

S. Ogur, G. ladarola, K. Oide and F. Zimmermann

FCC-ee Collider and Beam Parameters

$$n'_{e(\gamma)} = Y_{\gamma} \frac{dN_{\gamma}}{dz}$$

$$\int \frac{dN_{\gamma}}{dz} = \frac{5\alpha \gamma}{2\sqrt{3}\rho}$$
(photo-electron yield coefficient)
Number of photoelectrons emitted per length:

$$\frac{dN_{\gamma}}{dz} = \frac{5\alpha \gamma}{2\sqrt{3}\rho}$$

$$\int \alpha \approx 1/137$$
, fine structure constant

$$\gamma \approx 10^{5}$$
, the Lorentz factor

$$\rho \approx 11000 \text{ [m]}$$
, radius of curvature of the particle path

Convergence for bunch spacing 10[ns]

Furman- Pivi Model for various SEY values

Simulation of Secondary Electron Emission', SLAC-PUB-9912, 2003

ECLOUD SEY Model

SEY model comparison

SEY model comparison for 10ns bunch spacing

Number electrons in the saturation region is higher for the Furman-Pivi SEY model.

$$\rho_{neutr}[10^{13}/m^3] = 1.17$$

$$\rho_{neutr} [10^{13}/m^3] = 0.98$$

$$\rho_{neutr}[10^{13}/m^3] = 0.84$$

$$\rho_{neutr}[10^{13}/m^3] = 0.73$$

Collider Parameters for different bunch spacings

SEY=1.1

bunch space [ns]	neutralization value $[10^{13}/m^3]$	electron density $[10^{13}/m^3]$
10	1.47	1.42
12.5	1.17	1.03
15	0.98	0.71
17.5	0.84	0.51
20	0.73	0.45

Machine and Beam Parameters for FCC-ee DR

Energy	1.54 [GeV]
bunch spacing	50 [ns]
bunches per train	2
trains per beam	8
bunch length	3.4[mm]
bunch population	2.2 x 10 ¹⁰

beam radius (H)	2.2 [mm]	
beam radius (V)	2.8 [mm]	
emittance (x,y)	1.29, 1.22 [μm]	
external magnetic field	1.8 [T]	
circular beam pipe radius	10 [mm]	

FCC-ee DR for different SEY

Number of electrons in the chamber at each time step radius =10[mm], uniform initial e^- density = $10^{12}[m^{-3}]$

FCC-ee DR parameters for various radii and initial electron densities

Number of electrons in the chamber at each time step

0.5

0.0 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 1e-6

FCC-ee DR parameters for various radii and initial electron densities

Number of electrons in the chamber at each time step

0.5

0.0

0.0

0.2

0.4

0.8

0.6

1.0

1.2

1.4 1e-6

FCC-ee DR parameters for various radii and initial electron densities

Number of electrons in the chamber at each time step

0.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 1e-6

Thank you..

Furman-Pivi SEY model

$$\delta_{e}(E_{0},\theta_{0}) = \delta_{e}(E_{0},\theta_{0}=0)[1+e_{1}(1-\cos^{e_{2}}\theta_{0})]$$

$$\delta_{r}(E_{0},\theta_{0}) = \delta_{r}(E_{0},\theta_{0}=0)[1+r_{1}(1-\cos^{r_{2}}\theta_{0})]$$

$$\delta_{ts}(E_{0},\theta_{0}) = \hat{\delta}(\theta_{0})D(E_{0}/\hat{E}(\theta_{0})),$$

$$\delta_e(E_0, \theta = 0) = P_{1,e}(\infty) + [\hat{P}_{1,e} - P_{1,e}(\infty)]e^{-(|E_0 - \hat{E}_e|/W)^p/p},$$

$$\delta_r(E_0, \theta = 0) = P_{1,r}(\infty)[1 - e^{-(E_0/E_r)^r}],$$

$$\hat{\delta}(\theta_0) = \hat{\delta}_{ts}[1 + t_1(1 - \cos^{t_2}\theta_0)],$$

$$\hat{E}(\theta_0) = \hat{E}_{ts}[1 + t_3(1 - \cos^{t_4}\theta_0)],$$

$$D(x) = \frac{sx}{s - 1 + x^s}$$

Furman-Pivi SEY model Parameters

	Copper	Stainless Steel	
p_n	2.5, 3.3, 2.5, 2.5, 2.8, 1.3, 1.5, 1.5, 1.5, 1.5	1.6, 2, 1.8, 4.7, 1.8, 2.4, 1.8, 1.8, 2.3, 1.8	
$\epsilon_n [eV]$	1.5, 1.75, 1, 3.75, 8.5, 11.5, 2.5, 3, 2.5, 3	3.9, 6.2, 13, 8.8, 6.25, 2.25, 9.2, 5.3, 17.8, 10	

TABLE I: Main parameters of the model.			
	Copper	Stainless Steel	
Emitted angu	lar spectrum (Sec. I	I C 1)	
α	1	1	
Backscattered	electrons (Sec. III E	3)	
$P_{1,e}(\infty)$	0.02	0.07	
$\hat{P}_{1,e}$	0.496	0.5	
\hat{E}_e [eV]	0	0	
W [eV]	60.86	100	
p	1	0.9	
$\sigma_e [eV]$	2	1.9	
e_1	0.26	0.26	
e_2	2	2	
Rediffused ele	ctrons (Sec. III C)		
$P_{1,r}(\infty)$	0.2	0.74	
E_r [eV]	0.041	40	
r	0.104	1	
q	0.5	0.4	
r_1	0.26	0.26	
r_2	2	2	
True secondar	y electrons (Sec. III	D)	
$\hat{\delta}_{ts}$	1.8848	1.22	
\hat{E}_{ts} [eV]	276.8	310	
8	1.54	1.813	
t_1	0.66	0.66	
t_2	0.8	0.8	
t_3	0.7	0.7	
t_4	1	1	
${\bf Total}\; {\bf SEY}^a$			
$\hat{E}_t [\text{eV}]$	271	292	
$\hat{\delta}_t$	2.1	2.05	

^aNote that $\hat{E}_{t} \simeq \hat{E}_{ts}$ and $\hat{\delta}_{t} \simeq \hat{\delta}_{ts} + P_{1,e}(\infty) + P_{1,r}(\infty)$ provided that $\hat{E}_{ts} \gg \hat{E}_{e}, E_{r}$.

M.A. Furman and M.T.F. Pivi, 'Probabilistic Model for the Simulation of Secondary Electron Emission', SLAC-PUB-9912, 2003