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Motivation

I Goal: to perform a measurement of αs from scaling violation of the DIS
structure functions, which are directly measured at the starting scale Q2

0 .

I The effects of heavy quarks are considered.

I Non-singlet evolution is studied to N3LO and singlet evolution to N2LO.
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Deep inelastic scattering

p,M

k k′

q

X

pX

I Kinematic invariants:

Q2 = −q2
, x =

Q2

2p.q

I The cross section factorizes into
leptonic and hadronic tensor:

d2σ

dQ2dx
∼ LµνW

µν

I The hadronic tensor can be expressed through two structure functions:

Wµν(x ,Q
2) =

(
−gµν +

qµqν
q2

)
F1(x ,Q

2) +

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
F2(x ,Q

2)

p · q

I The structure functions Fi (x ,Q
2) are observables. They receive contributions

from both light and heavy (c , b) quarks.
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I The structure functions factorize in Mellin space

M
[
F(2,L)(x ,Q

2)
]
(N) =

∫ 1

0

dx xN−1F(2,L)(x ,Q
2) =

∑
j

C(N)
(2,L),j

(Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
· f (N)

j (µ2)

into perturbative Wilson coefficients Cj and nonperturbative parton
distribution functions fj .

I The whole mass dependence is encoded in the Wilson coefficients.

I The Wilson coefficients can be split

C(N)
(2,L),j

(
Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
= C

(N)
(2,L),j

(
Q2

µ2

)
+ h

(N)
(2,L),j

(
Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
into a light and a heavy flavor part.
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C(N)
(2,L),j

(
Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
= C

(N)
(2,L),j

(
Q2

µ2

)
+ h

(N)
(2,L),j

(
Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
I In the limit Q2 � m2, the heavy flavor part factorizes

h
(N)
(2,L),j

(Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
=
∑

i

C
(N)
(2,L),j

(Q2

µ2

)
· A(N)

ij

(m2
c

µ2
,
m2

b

µ2

)

[M. Buza et al., Nucl. Phys. B472 (1996) 611–658; M. Buza et al., Nucl. Phys. B485 (1997) 420–456.]

into the light flavor Wilson coefficients and the massive operator matrix
elements (OMEs) of local twist-2 operators Oi between partonic states j ,

A
(N)
ij

(m2

µ2

)
= 〈j |Oi |j〉 .

I By this method, contributions for Q2 � m2 in h
(N)
(2,L),j have been computed in

the literature.
[J. Blümlein et al., Nucl. Phys. B755 (2006) 272–285; I. Bierenbaum et al., Nucl. Phys. B780 (2007)

40–75; I. Bierenbaum et al., Nucl. Phys. B803 (2008) 1–41; I. Bierenbaum, J. Blümlein and S. Klein,

Nucl. Phys. B820 (2009) 417–482; S. W. G. Klein, PhD thesis (2009); A. Behring et al., Eur. Phys. J.

C74 (2014) no.9, 3033; J. Ablinger et al., Nucl. Phys. B886 (2014) 733–823; J. Ablinger et al., Nucl.

Phys. B890 (2014) 48–151; K. Schönwald, PhD thesis (2018).]
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The project

I Goal: measurement of as from scaling violation starting from an input
F2(x ,Q2

0 ).

I We include the known logarithmic terms in h
(N)
(2,L),j .

I Scaling proceeds through the Altarelli-Parisi equations
[D. Gross and F. Wilczek, Phys. Rev. D 8 (1973) 3633–3652,
G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298–318.]

C (N)(Q2) = c
(N)
1 as(Q

2) + c
(N)
2 a2

s (Q
2) + · · ·

d

d logQ2
f NS (N)(Q2) = PNS,(N)(Q2) f NS (N)(Q2)

d

d logQ2

(
f S (N)(Q2)

)
i
=
(
PS (N)(Q2)

)
ij

(
f S (N)(Q2

)
j

d

d logQ2
as(Q

2) = −
∞∑
k=0

βka
k+2
s (Q2), as = αs/(4π)
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The approach

I We want to solve analytically
[W. Furmanski, R. Petronzio, Z. Phys. C11 (1982) 293–314,
E. B. Zijlstra, W. L. Van Neerven, Nucl. Phys. B383 (1992) 525–574,
J. Blümlein, V. Ravindran, W. L. Van Neerven, Nucl. Phys. B586 (2000) 349–381,

J. Blümlein and A. Guffanti, Nucl. Phys. Proc. Suppl. 152 (2006) 87.]

FNS
2 (x ,Q2) = ENS(Q2,Q2

0 ) FNS
2 (Q2

0 )

and (
F S

2 (x , t)
∂tF

S
2 (x , t)

)
= ES(t, 0)

(
F S

2 (x , 0)
∂tF

S
2 (x , 0)

)

t = − 2

β0
log

as(Q
2)

as(Q2
0 )

I ENS(Q2,Q2
0 ) and ES(t, 0) are physical (scheme-invariant) evolution

operators.
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The non-singlet sector

I We aim to include the contributions due to heavy quarks.

I In the limit Q2 � m2 the heavy flavour terms have the following factorized
form:

h
(N)
(2,L),j

(Q2

µ2
,
m2

c

µ2
,
m2

b

µ2

)
=
∑

i

C
(N)
(2,L),j

(Q2

µ2

)
· A(N)

ij

(m2
c

µ2
,
m2

b

µ2

)
.

I One obtains for the heavy quark Wilson coefficients at Q2 = µ2

hNS
2,q = −β0,Q

4
ln2 Q2

m2
+

1

2
P̂(1),NS
qq ln

Q2

m2
+ a(2),NS

qq +
β0,Q

4
ζ2P

(0)
qq + Ĉ (2),NS

q

at two loops and similar expressions for the three-loop heavy quark Wilson

coefficient h3 and the two-mass contribution ˆ̂h3.
[M. Buza et al., Nucl. Phys. B472 (1996) 611–658; M. Buza et al., Eur. Phys. J. C1 (1998) 301–320;

I. Bierenbaum, J. Blümlein and S. Klein, Nucl. Phys. B820 (2009) 417–482; S. W. G. Klein, PhD thesis

(2009); A. Behring et al., Eur. Phys. J. C74 (2014) no.9, 3033; J. Ablinger, J. Blümlein, A. De Freitas,

A. Hasselhuhn, C. Schneider and F. Wißbrock, Nucl. Phys. B921 (2017), 585–688.]
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The non-singlet sector
I The evolution operator is obtained by

ln ENS (Q2
,Q2

0 ) = ln FNS
2 (Q2)− ln FNS (Q2

0 )

= ln CNS
(
a,Q2

,m2
c ,m

2
b

)
+

∫ a

a0

da

[
P0a + P1a

2 + P2a
3 + P3a

4

−β0a2 − β1a3 − β2a4 − β3a5

]

− ln CNS
(
a0,Q

2
0 ,m

2
c ,m

2
b

)
I After a perturbative expansion in a = as(Q2),

ENS(Q2,Q2
0 ) =

(
a

a0

)− P0
β0

{
1 + (a− a0)

(
c1 +

β1P0

β2
0

− P1

β0

)
+

1

2
(a− a0)

2

(
c1 +

β1P0

β2
0

− P1

β0

)2

+
1

2

(
a2 − a2

0

) [
−c2

1 + 2c2 +
β1P1

β2
0

+

(
β2

β2
0

− β2
1

β3
0

)
P0 −

P2

β0

]

+(a− a0)
(
a2 − a2

0

)(
c1 +

β1P0

β2
0

− P1

β0

)(
−c2

1

2
+ c2 +

β1P1

2β2
0

+

(
β2

2β2
0

− β2
1

2β3
0

)
P0 −

P2

2β0

)

+
(
a3 − a3

0

)(c3
1

3
− c2c1 + c3 +

β1P2

3β2
0

+

(
β2

3β2
0

− β2
1

3β3
0

)
P1 +

(
β3

1

3β4
0

− 2β2β1

3β3
0

+
β3

3β2
0

)
P0 −

P3

3β0

)

+a2
(
h2(Q

2,m2
c) + h2(Q

2,m2
b)
)
− a2

0

(
h2(Q

2
0 ,m

2
c) + h2(Q

2
0 ,m

2
b)
)

+a3
(
h3(Q

2,m2
c) + h3(Q

2,m2
b) +

ˆ̂h3(Q
2,m2

b,m
2
c)
)
− a3

0

(
h3(Q

2
0 ,m

2
c) + h3(Q

2
0 ,m

2
b) +

ˆ̂h3(Q
2
0 ,m

2
b,m

2
c)
)

−a0c1

[
a0 (a− a0)

(
h2(Q

2
0 ,m

2
c) + h2(Q

2
0 ,m

2
b)
)
+ a2

(
h2(Q

2,m2
c) + h2(Q

2,m2
b)
)
− a2

0

(
h2(Q

2
0 ,m

2
c) + h2(Q

2
0 ,m

2
b)
)]

+(a− a0)

(
β1P0

β2
0

− P1

β0

)[
a2
(
h2(Q

2,m2
c) + h2(Q

2,m2
b)
)
− a2

0

(
h2(Q

2
0 ,m

2
c) + h2(Q

2
0 ,m

2
b)
)]
}
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The singlet sector

I The singlet sector requires two input measurements: F S
2 (x , t = 0) and

∂
∂tF

S
2 (x , t = 0).

I Their scaling in t is given by

∂

∂t

(
F S

2 (t)
∂
∂t
F S

2 (t)

)
=

[
∞∑
i=0

aiKi

](
F S

2 (t)
∂
∂t
F S

2 (t)

)
I The components KIJ of the matrix Ki are, in the massless case, given by

KIJ =
∂CI ,m

∂t
C−1
m,J +

β0a

β(a)
CI ,mγmnC

−1
n,J

I In the massive case CI ,j also contains the massive contributions.

I Ki can be computed in perturbation theory. They depend on anomalous
dimensions, βi , massless and massive Wilson coefficients.
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The singlet sector

I The equation is solved by [J. Blümlein, A. Vogt, Phys.Rev. D58 (1998) 014020]

(
F S

2 (t)
∂
∂t F

S
2 (t)

)
=

[
1 +

∞∑
k=1

akUk

]
L(a, a0)

[
1 +

∞∑
k=1

ak0Uk

]−1 (
F S

2 (0)
∂
∂t F

S
2 (0)

)

L(a, a0) =

(
a

a0

)− 2
β0 [ exp(r−)e− + exp(r+)e+

]
r± =

1

8

[
− γ(0)

qq − γ
(0)
gg ±

√
(γ

(0)
qq − γ(0)

gg )2 + 4γ
(0)
qq γ

(0)
gg

]
eigenvalues of K0

e± =
1

r± − r∓
[K0 − r∓1]

K̃k = Kk +

k−1∑
i=1

Kk−iUi

Uk = − 2

β0k

[
e−K̃ke− + e+K̃ke+

]
+

e+K̃ke−

r− − r+ − β0
2 k

+
e+K̃ke−

r+ − r− − β0
2 k

.
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Numerical Implementation

I The splitting functions Pij are known to N3LO.
[S. Moch, J. Vermaseren and A. Vogt, Nucl. Phys. B688 (2004) 101–134.]

P
(3),NS
qq can be approximated by a Padé approximant.

[J. Blümlein, H. Böttcher and A. Guffanti, Nucl. Phys. B774 (2007) 182–207.]

I Ci,j are known to 3 loops. Numerical representation of C
(3)
2,q to be used.

[W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys. Rev. D18 (1978) 3998–4017;
W.L. van Neerven and E.B. Zijlstra, Phys. Lett. B272 (1991) 127–133;

J.A.M. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B724 (2005) 3–182.]

I Aij are known to 2 loops and a number of results to 3 loops.
[I. Bierenbaum, J. Blümlein, S. Klein, Nucl. Phys. B820 (2009) 417–482;
J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wissbrock, Nucl. Phys. B844 (2011) 26–54;

A. Behring et al., Eur. Phys. J. C74 (2014) no.9, 3033.]

I Sufficient for N3LO analysis of the non-singlet and NNLO of the singlet.

I All quantities depend on harmonic sums up to weight 5 and S6(N).
[J. Vermaseren, Int. J. Mod. Phys. A 14 (1999) 2037–2076;

J. Blümlein and S. Kurth, Phys. Rev. D 60 (1999) 014018]
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Numerical Implementation
I The evolution kernels are given by harmonic sums

Sk1,k2,...,km(N) =
N∑

n1=1

(sign(k1))n1

n
|k1|
1

n1∑

n2=1

(sign(k2))n2

n
|k2|
2

· · ·
nm−1∑

nm=1

(sign(km))nm

n
|km|
m

I Need systematic way to compute harmonic sums, e.g.

S−2,3(N) =
N∑

n1=1

(−1)n1

n2
1

n1∑

n2=1

1

n3
2

and their analytic continuation for complex N.
[J. Blümlein, Comput. Phys. Commun. 180 (2009) 2218.]

I Use factorial series for |N| → ∞ and recurrences for N → N − 1.
Algorithms are available in the Mathematica package HarmonicSums
[J. Ablinger, PhD thesis (2012); J. Ablinger, PoS (LL2014) 019; J. Blümlein, Clay Math. Proc. 12

(2010) 167-188; J. Ablinger, J. Blümlein and C. Schneider, J. Math. Phys. 54 (2013), 082301; ]

I Factors of (−1)N → project on even N (unpolarized case) or odd N
(polarized case).

I Perform inverse Mellin transformation numerically as last step (one contour
integral).
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Conclusions

I A framework of the scheme independent study of the scaling violations of
deep-inelastic structure functions has been provided.

I As the next step, the framework is implemented in a Fortran library.

I Numerical illustrations will be provided.

I The effect of the heavy flavour contribution is studied.
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