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Motivation

The Standard Model is awesome but there are many open questions:

How to accommodate gravity in it?

What about dark matter?

How to explain matter-antimatter asymmetry in the universe?

What about the hierarchy problem?

. . .

Where to look for new Beyond SM physics?

Higgs precision measurements
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Parametrizing deviations from the SM with EFTs

EFTs parametrize physical e�ects in a model-independent way

EFT Lagrangian

L = L(4)
SM +

∑
d>4

1

Λd−4

∑
i

C
(d)
i O

(d)
i

Λ is an energy scale, Λ� MZ

O(d)
i are operators of mass-dimension d

C
(d)
i are Wilson coe�cients

Example: d = 6 → OF3 = f abcF aµ
νF

b ν
ρF

c ρ
µ
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Operator basis

Key ingredient:

Use the most general possible basis of operators of the form:

O(d)
i ∼ Li ({F , ψ, φ,D})︸ ︷︷ ︸

Lorentz invariant

×Gi ({f abc , (τ a)ij , . . .})︸ ︷︷ ︸
Gauge group invaraint

Tasks:

1 list them all for a given dimension.

2 remove redundancies, i.e. equivalence up to

total derivatives (IBP)

equations of motion (EOM)

d 5 6 7 8

# 2 84 30 993
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Testing models

LUV =
∑

i bi fi ({Φ})

UV model

LEFT ({C (d)
i (b)})

EFTE

Λ

MZ

integrate out

some heavy d.o.f.

C
(d)
i (MZ )↔ C

(d)
j (Λ)

RG �ow

compare

to data
H

W

W

Requires anomalous dimension matrix

Ci (MZ ) = Ci (Λ)− (4π)−2Ċi log (Λ/MZ ) , Ċi = γijCj
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What we are after

What has already been explored

d = 6 d = 7 d = 8 d = 9 d = 10

O basis X X X X
γij @ 2-loop X X

Our goal

1 d = 8

2 SU(N) gauge group

3 compute γij @ 1-loop

N.B. Is d = 8 relevant compared to d = 6?

Very much process dependent, but it is worth computing.
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Building the operator basis

Target:

∼ Li ({F , ψ, φ,D})︸ ︷︷ ︸
Lorentz invariant

×Gi ({f abc , (τ a)ij , . . .})︸ ︷︷ ︸
Gauge group invaraint

O(d)
i

Fi ({λ, λ̃})︸ ︷︷ ︸
form factor

∼ fi ({λ, λ̃}) gi (f
abc , . . .)

on-shell

The fi ({λ, λ̃}) correspond to tree-level contact terms and are completely
characterized by mass-dimension and helicity weight. Advantages:

1 easy to build

2 equation of motion redundancy absent

3 IBP redundancy becomes momentum conservation (with caveat...)
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Anomalous dimensions and unitarity

When does Oj renormalise Oi?

Oi ∼

tree

renormalised

by Oj if

1-loop

Oj

One is interested in the UV divergent part of this matrix element:

O(d)
i

∣∣
1-loop

= + +

double-cut

→ induces non-renormalization theorems
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Direct extraction of anomalous dimensions from cuts:

Non-perturbative results

RG equation: DFi =
(

∆γij + δijβ
∂
∂g

)
Fj , D = −µ ∂

∂µ(
e−iπD − 1

)
F∗

i = iMF∗
i , S = 1 + iM

Expanding order by order and comparing:[
∆γ

(1)
ij + δijβ

(1)∂
]
F (0)

i = − 1

π
(MFi )

(1)

(MFi )
(1) =

∑
k,channels

k

1

M

q

k + 1

n

Fi
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Take-home message

SMEFT is a good playground for testing possible new physics

key ingredients are a complete operator basis and the anomalous
dimension matrix

on-shell methods greatly facilitate the computations of these
ingredients

there is still much to explore (d ≥ 7, HEFT model,. . .)
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