Standard Model EFT: the on-shell way

Manuel Accettulli Huber

With S. De Angelis

My living room, 28/07/2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 764850

Motivation

The Standard Model is awesome but there are many open questions:

- K How to accommodate gravity in it?
- What about dark matter?
- Key How to explain matter-antimatter asymmetry in the universe?
- What about the hierarchy problem?
- ۹ ...

Where to look for new Beyond SM physics?

Higgs precision measurements

Motivation

The Standard Model is awesome but there are many open questions:

- How to accommodate gravity in it?
- What about dark matter?
- Key How to explain matter-antimatter asymmetry in the universe?
- What about the hierarchy problem?
- ۲...

Where to look for new Beyond SM physics?

Higgs precision measurements

Parametrizing deviations from the SM with EFTs

EFTs parametrize physical effects in a model-independent way

EFT Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \sum_{d>4} rac{1}{\Lambda^{d-4}} \sum_i C_i^{(d)} \mathcal{O}_i^{(d)}$$

A is an energy scale, A $\gg M_Z$ $\mathcal{O}_i^{(d)}$ are operators of mass-dimension d
 $C_i^{(d)}$ are Wilson coefficients

Example: $d = 6 \rightarrow \mathcal{O}_{F^3} = f^{abc} F^{a\mu}{}_{\nu} F^{b\nu}{}_{\rho} F^{c\rho}{}_{\mu}$

Operator basis

Key ingredient:

Use the most general possible basis of operators of the form:

$$\mathcal{O}_i^{(d)} \sim \underbrace{L_i(\{F, \psi, \phi, D\})}_{\text{Lorentz invariant}} \times \underbrace{G_i(\{f^{abc}, (\tau^a)_j^i, \ldots\})}_{\text{Gauge group invariant}}$$

Tasks:

- **1** list them all for a given dimension.
- 2 remove redundancies, *i.e.* equivalence up to
 - total derivatives (IBP)
 - « equations of motion (EOM)

Operator basis

Key ingredient:

Use the most general possible basis of operators of the form:

$$\mathcal{O}_i^{(d)} \sim \underbrace{L_i(\{F, \psi, \phi, D\})}_{\text{Lorentz invariant}} \times \underbrace{G_i(\{f^{abc}, (\tau^a)_j^i, \ldots\})}_{\text{Gauge group invariant}}$$

Tasks:

- **1** list them all for a given dimension.
- 2 remove redundancies, *i.e.* equivalence up to
 - total derivatives (IBP)
 - « equations of motion (EOM)

[Henning,Lu,Melia,Murayama;...]

A first look at S 000●0	MEFT	On-shell methods at work	Conclusions O
Testing	models		
- *		[Henni	ng,Lu,Murayama;]
E	UV model	intervete out	EF I
٨	$\mathcal{L}^{UV} = \sum_i b_i f_i(\{\Phi\})$	some heavy d.o.f.	$\mathcal{L}^{EFT}(\{C_i^{(d)}(b)\})$
	W		RG flow
Mz	H · سر W	compare	
		to data	

Requires anomalous dimension matrix

$$C_i(M_Z) = C_i(\Lambda) - (4\pi)^{-2} \dot{C}_i \log(\Lambda/M_Z) , \qquad \dot{C}_i = \gamma_{ij} C_j$$

A first look at 000●0	SMEFT	On-shell methods at work 000	Conclusions O
Testing	g models		
		[Hennin	g,Lu,Murayama;]
E	UV model		EFT
۸	$\mathcal{L}^{UV} = \sum_i b_i f_i(\{\Phi\})$	some heavy d.o.f.	$\mathcal{L}^{EFT}(\{C_i^{(d)}(b)\})$
	W	,	RG flow

	V V		↓ ···• ·····		
M_		compare	$C^{(d)}(M_{-}) \leftrightarrow C^{(d)}(\Lambda)$		
IVIZ		to data	$C_i (MZ) \leftrightarrow C_j (N)$		
	۲. ۱۸۷				
	V V				

Requires anomalous dimensi<u>on matrix</u>

$$C_i(M_Z) = C_i(\Lambda) - (4\pi)^{-2} \dot{C}_i \log(\Lambda/M_Z) , \quad \dot{C}_i = \gamma_{ij} C_j$$

A first look at SMEFT 000●0	On-shell methods at work 000	Conclusions O
Testing models		
	[Henning Lu Murayama:	1

Requires anomalous dimension matrix

$$C_i(M_Z) = C_i(\Lambda) - (4\pi)^{-2} \dot{C}_i \log(\Lambda/M_Z) , \quad \dot{C}_i = \gamma_{ij} C_j$$

A first look at SMEFT 000●0	On-shell methods at work 000	Conclusions O
Testing models		

Requires anomalous dimension matrix

$$C_i(M_Z) = C_i(\Lambda) - (4\pi)^{-2} \dot{C}_i \log(\Lambda/M_Z) , \quad \dot{C}_i = \gamma_{ij} C_j$$

A first look at SMEFT 0000●			On-shell n 000	nethods at wo	rk		Conclusions O
What we are after							
[Alonso, Jenkins, Manohar, Trott; Henning, Lu, Melia, Murayama; Li, Ren, Xiao, Yu, Zheng;							
What has already been explored							
	basis	d = 6	d = 7	d = 8	d = 9	<i>d</i> = 10	
	γ_{ij}	@ 2-loop	\checkmark	V	·		
	[Bern,Parra-MArtinez,Sawyer;]					(]	

1 d = 8

2 SU(N) gauge group

3 compute γ_{ij} @ 1-loop

N.B. Is d = 8 relevant compared to d = 6?

[Hays,Martin,Sanz,Setford]

Very much process dependent, but it is worth computing.

A first look at SMEFT 00000	On-shell methods at work 000	Conclusions O
What we are after		

 $[{\tt Alonso}, {\tt Jenkins}, {\tt Manohar}, {\tt Trott}; {\tt Henning}, {\tt Lu}, {\tt Melia}, {\tt Murayama}; {\tt Li}, {\tt Ren}, {\tt Xiao}, {\tt Yu}, {\tt Zheng}; \ldots]$

What has already been explored

[Bern, Parra-MArtinez, Sawyer; . .]

Our goal

- 1 d = 8
- 2 SU(N) gauge group
- ${f 3}$ compute γ_{ij} ${f 0}$ 1-loop

N.B. Is d = 8 relevant compared to d = 6?

[Hays,Martin,Sanz,Setford]

Very much process dependent, but it is worth computing.

A first	look at SME ●	FT		On-shell r 000	nethods at wo			Con cl O	usions
Wł	What we are after								
[Alonso,Jenkins,Manohar,Trott;Henning,Lu,Melia,Murayama;Li,Ren,Xiao,Yu,Zheng;]									
What has already been explored									
			<i>d</i> = 6	d = 7	<i>d</i> = 8	<i>d</i> = 9	d = 10		
		${\cal O}$ basis	\checkmark	\checkmark	\checkmark	\checkmark			
		γ_{ii}	@ 2-loop	\checkmark	\checkmark				

d = 8

Our goal

☑ SU(N) gauge group

 γ_{ij}

3 compute γ_{ii} @ 1-loop

N.B. Is d = 8 relevant compared to d = 6?

[Hays,Martin,Sanz,Setford]

[Bern, Parra-MArtinez, Sawyer; . .]

Very much process dependent, but it is worth computing.

Building the operator basis

[Ma,Shu,Xiao; Aoude,Machado; Falkowski; Durieux,Machado]

The $f_i(\{\lambda, \tilde{\lambda}\})$ correspond to tree-level contact terms and are completely characterized by mass-dimension and helicity weight. Advantages:

- easy to build
- 2 equation of motion redundancy absent
- IBP redundancy becomes momentum conservation (with caveat...)

Building the operator basis

[Ma,Shu,Xiao; Aoude,Machado; Falkowski; Durieux,Machado]

The $f_i(\{\lambda, \tilde{\lambda}\})$ correspond to tree-level contact terms and are completely characterized by mass-dimension and helicity weight. Advantages:

- 1 easy to build
- 2 equation of motion redundancy absent
- IBP redundancy becomes momentum conservation (with caveat...)

Building the operator basis

[Ma,Shu,Xiao; Aoude,Machado; Falkowski; Durieux,Machado]

The $f_i(\{\lambda, \tilde{\lambda}\})$ correspond to tree-level contact terms and are completely characterized by mass-dimension and helicity weight. Advantages:

- easy to build
- 2 equation of motion redundancy absent
- IBP redundancy becomes momentum conservation (with caveat...)

Anomalous dimensions and unitarity

When does \mathcal{O}_i renormalise \mathcal{O}_i ?

[Huang et al;Arkani-Hamed et al]

One is interested in the UV divergent part of this matrix element:

Anomalous dimensions and unitarity

When does \mathcal{O}_i renormalise \mathcal{O}_i ?

[Huang et al;Arkani-Hamed et al]

One is interested in the UV divergent part of this matrix element:

 \rightarrow induces non-renormalization theorems [Cheung,Shen]

Direct extraction of anomalous dimensions from cuts:

Non-perturbative results

$$\begin{array}{ll} \mathsf{RG equation:} & D\mathcal{F}_i = \left(\Delta \gamma_{ij} + \delta_{ij} \beta \frac{\partial}{\partial g} \right) \mathcal{F}_j, \quad D = -\mu \frac{\partial}{\partial \mu} \\ & \left(e^{-i\pi D} - 1 \right) \mathcal{F}_i^* = i \mathcal{M} \mathcal{F}_i^*, \quad S = 1 + i \mathcal{M} \end{array}$$

Expanding order by order and comparing:

[Caron-Huot,Wilhelm]

 $\left[\Delta \gamma_{ij}^{(1)} + \delta_{ij}\beta^{(1)}\partial\right]\mathcal{F}_{i}^{(0)} = -\frac{1}{\pi}\left(\mathcal{M}\mathcal{F}_{i}\right)^{(1)}$

Direct extraction of anomalous dimensions from cuts:

Non-perturbative results

RG equation:
$$D\mathcal{F}_i = \left(\Delta\gamma_{ij} + \delta_{ij}\beta\frac{\partial}{\partial g}\right)\mathcal{F}_j, \quad D = -\mu\frac{\partial}{\partial\mu}$$

 $\left(e^{-i\pi D} - 1\right)\mathcal{F}_i^* = i\mathcal{M}\mathcal{F}_i^*, \quad S = 1 + i\mathcal{M}$

Expanding order by order and comparing:

[Caron-Huot,Wilhelm]

$$\left[\Delta \gamma_{ij}^{(1)} + \delta_{ij}\beta^{(1)}\partial\right]\mathcal{F}_{i}^{(0)} = -\frac{1}{\pi}\left(\mathcal{M}\mathcal{F}_{i}\right)^{(1)}$$

Take-home message

- SMEFT is a good playground for testing possible new physics
- key ingredients are a complete operator basis and the anomalous dimension matrix
- on-shell methods greatly facilitate the computations of these ingredients
- \checkmark there is still much to explore ($d \ge 7$, HEFT model,...)