Superconducting materials for the magnetic confinement coils

P. Libeyre

ITER Organization/MCD/EVDA

Magnet Section/ CSSP Group

EASISchool3 Summer School

09 October 2020

"The views and opinions expressed herein do not necessarily reflect those of the ITER Organization"

content

Magnetic confinement

ITER magnet system

ITER superconductors

Manufacturing status

china eu india japan korea russia usa P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

Lawson criterion (1955)

Plasma energy balance: dW/dt = 0

Density (n) x confinement time (τ_E) x temperature (T)

 $n.\tau_{E}.T > 10^{21}$ (keV.s.m⁻³)

Fusion routes

John D. Lawson (1923-2008)

Inertial fusion (sun)

High density (10²⁷ . m⁻³) Low temperature (1.5 keV)

Magnetic fusion (ITER)

Low density (10²⁰. m⁻³) High temperature (10 keV) Energy confinement time 3 s $n.\tau_{F}.T = 3.10^{21}$

Magnetic configurations linear configuration toroidal configuration toroidal radial Magnetic torus В major Larmor radius: poloidal Radius $r_{I} = m.v_{\perp}/q.B$ B_{t} **Basic Magnetic Mirror Machine:** Toroidal **Magnetic Field** Particle Low toroidal Motion field Field High toroidal field TTOOOOOOOOOOOOOO varies in 1/r Current High Field Side Low Field Side (LFS) (HFS) Issue: losses at the ends Issue: vertical drift of particles

iter china eu india japan korea russia usa | P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

Page 5

Helical magnetic configurations

The magnetic field lines form a series of nested magnetic surfaces. Charged particles remain trapped within magnetic surfaces

How to achieve it?

stellarator

heliotron

ter china eu india japan korea russia usa

The tokamak route

Copper magnets

Production of magnetic fields in tokamaks was first achieved using copper magnets.

JET electric power supply: **400 MW** \rightarrow motor generator **flywheels** required

JET European tokamak(Culham)

\rightarrow issue: electrical energy consumption

fter china eu india japan korea russia usa P. Libeyre, EASIS

Tore

Superconducting magnets

The construction of magnets using superconducting materials allowed a considerable reduction of the needed electrical power for production of magnetic fields and long pulses.

T7 (NbTi, Moscow): 1979 Tore Supra (NbTi, Cadarache): 1988 T15 (Nb₃Sn, Moscow): 1988

Tore Supra TF electrical power: 1 MW

Robert Aymar (1936 -)

ITER designFusion power500 MWEnergy gain $Q \ge 10$ Inductive discharge $\ge 400 \text{ s}$ Large plasma radius6.2 mSmall plasma radius2.0 mPlasma current15 MAToroidal field5.3 T

Page 12

fter china eu india japan korea russia usa | P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

Page 13

Plasma operation

Conductor design

Conductor current is determined by the maximum allowable voltage to discharge the coils U = L dI/dt Discharge time constant: 11 s → high current conductor required

TF coil: 134 turns x **68 kA** = 9.1 MA/coil **CS coil**: 556 turns x **40 kA** = 22.2 MA/coil

Maximum voltage

30 kV test voltage for CS coils

 \rightarrow high voltage insulation materials required

Page 17

iter china eu india japan korea russia usa | P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

III - A china eu

Superconducting wires

- For practical applications, the superconductor is subdivided into fine filaments, which are **twisted together** and **embedded in a low-resistivity matrix** of normal metal (e.g., pure OFHC Cu for Nb-Ti and Nb₃Sn, Ag or Ag–Au for HTS).
- The superconducting multifilament composites are manufactured under the form of wires (with an outer diameter of ~1 mm) or tapes.

Nb-Ti Wire for ITER

Nb₃Sn Wire for ITER

Industrial manufacture of supraconducting wires

A superconducting wire is made of superconducting **filaments** embedded into a copper matrix.

The manufacture is performed in two steps:

- a monofilamentary step
- a multifilamentary step
- → multifilamentary twisted composite wire (I ~ km, Ø ~mm)

Monofilamentary step

Multifilamentary twisted composite wire

Deep Zoom into ITER CS conductor put together by Carlos Sanabria and Peter Lee, FSU

23

Cable-in-conduit conductors

 a cable-in-conduit conductor allows achieving high transport current, by twisting together into a cable several hundreds of strands contained in a steel pipe internally cooled by a flow of supercritical helium

 in a dual channel cable-in-conduit conductor, a central channel is managed along the conductor axis

Multistage twisted cables

Cable jacketing

Cable jacketing is performed in 3 steps:

- Jacket manufacture
- Cable pulling through
- Jacket compaction

ITER Conductors

Cable-in-conduit ITER conductors cooled by supercritical He flow at 4.5 K

Nb₃Sn critical current strain dependence

Nb₃Sn critical current is highly sensitive to applied strain

 \rightarrow selection of wind and react process to minimize applied strain

- Winding
- Reaction heat treatment (650C, 200 h)
- Turn insulation

Intrinsic Strain (%)

Nb₃Sn industrial production

- TF and CS strand productions are completed with over 500 tons (~7800 billets and 100,000 km) for TF and ~170 tons for CS.
- It is the largest Nb₃Sn strand production ever and has called for a significant worldwide production ramp up.
- Pre-ITER world production was estimated at ~15 t/year; it has been steady for the last five years at ~100 t/year.

Conductor manufacture is complete

TF coils

First TF winding-pack before resin impregnation

First TF case before assembly with winding-pack

iter china eu india japan korea russia usa P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

Page 30

First TF coil delivered to ITER

china eu india japan korea russia usa P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

CS coils

Courtesy GA

CS Module heat treated

CS Module mock-up turn insulation application

CS coils

Courtesy GA

CS Module 1 ground insulated

CS Module 1 cold testing

PF coils

Courtesy F4E

PF4 2nd double pancake winding

PF coils manufacturing hall

iter china eu india japan korea russia usa P. Libeyre, EASISch

PF coils

Courtesy F4E

Courtesy F4E

PF2 resin impregnation preparation PF5 resin impregnated

iter china eu india japan korea russia usa P. Libeyre, EASISchool

PF coils

PF1 ground insulated

Courtesy Efremov

Courtesy F4E PF6 cold testing preparation

iter china eu india japan korea russia usa

Correction coils

BCC1 winding-pack

<image><caption>

Prototype BCC case closure welding

iter china eu india japan korea russia usa $\mid P$.

P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020

Page 37

Summary

ITER Magnet System component	Status
Nb ₃ Sn conductor lengths	Delivered to coil manufacturers
NbTi conductor lengths	Delivered to coil manufacturers
TF coils	3 TF coils delivered to IO
PF coils	PF6 prepared for cold testing PF5 resin impregnated PF4 under winding PF1 ground insulated
CS coils	Module 1 cold tested Module 2 prepared for cold testing Module 3 resin impregnated Module 4 ground insulated Module 5 under turn insulation application Module 6 stacked, preparing for heat treatment
Correction Coils	6 BCC coils manufactured, ready for delivery to IO