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Magnetic confinement

fuels

reaction

Available
on earth

To be
produced

Fusion reaction Pfus = Pα + Pn
distribution:
Pα ~ 20%
Pn ~ 80%

fusion 
products

Independant travel of charged
particles: 
→ plasma required
Issues: - electrostatic repulsion

- energy losses Ploss

Q energy gain

Q = Pfus/Pin

Q = 1 breakeven

Q = ∞ Ignition E = W/ Ploss

E energy confinement time

Hans Bethe
(1906 - 2005)
Nobel Prize of 
Physics 1967

Pin
Ploss

Pα

Pn
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Magnetic confinement

Lawson criterion (1955)

n.E.T > 1021(keV.s.m-3)

Plasma energy balance: dW/dt = 0

Density (n) x confinement time (E) x temperature (T) 

John D. Lawson 
(1923-2008)Fusion routes

Inertial fusion (sun)
High density
(1027 . m-3)
Low temperature (1.5 keV)

Magnetic fusion (ITER)
Low density (1020. m-3)
High temperature (10 keV)
Energy confinement time 3 s
n.E.T = 3.1021
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major 
Radius

toroidal
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radial

Toroidal
Field 
varies in 
1/r

Magnetic
torus

e

i

Bt

Magnetic confinement

linear configuration toroidal configuration

Issue: vertical drift of particlesIssue: losses at the ends

Larmor radius: 
rL = m.v┴/q.B

B

Magnetic configurations
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Magnetic confinement

 
 

How to achieve it?

The magnetic field lines form a series of 
nested magnetic surfaces. 
Charged  particles remain trapped within 
magnetic surfaces

stellarator heliotron

Helical magnetic configurations
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Magnetic confinement
Tokamak design (1958)

Lev A. 
Artsimovitch
(1909-1973)

Igor 
Kurtchatov
(1903-1960)

Geneva 
Conference1958
Researches 
opening

Novosibirsk 
Conference 1968
Te > 1 keV
E > 10 ms

toroidalnaïa kamera s magnitnymi katushkami
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Paul-Henri Rebut
(1935- )

T1 (Moscow):   1958
T3 (Moscow): 1968
TFR (Fontenay-aux-Roses):1973
JET (Culham):     

- commissioning: 1983
- 1st DT exp. 1991
- 2nd DT exp. 1997
- 3rd DT exp. 2020 ?

TFR

JET

T1

The tokamak route

Magnetic confinement

E  IpR2Pin
-2/3

Ip
R

r Pin
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Copper magnets
Production of magnetic fields in 
tokamaks was first achieved using
copper magnets.
JET electric power supply: 400 MW
→ motor generator flywheels
required

→ issue: electrical energy consumption

JET European tokamak(Culham)

Magnetic confinement
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Robert Aymar
(1936 - )

Tore 
Supra

T7 (NbTi, Moscow):  1979
Tore Supra (NbTi, Cadarache): 1988
T15 (Nb3Sn, Moscow): 1988

Superconducting magnets
The construction of magnets using
superconducting materials allowed a 
considerable reduction of the needed
electrical power for production of 
magnetic fields and long pulses.

Tore Supra TF electrical power: 1 MW

Magnetic confinement
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ITER design

Fusion power 500 MW

Energy gain Q ≥ 10

Inductive discharge ≥ 400 s 

Large plasma radius 6.2 m

Small plasma radius 2.0 m

Plasma current 15 MA

Toroidal field 5.3 T

Magnetic confinement
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ITER Magnet System

TF magnet
M = 5373 t
W = 41 GJ

PF magnet
M = 2746 t
W = 10 GJ
(17 MA)

Total mass: 
10 360 t
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ITER Magnet System
18 TF coils 6 CS coils

 

Poloidal cross-section

current capacity
I = 9.1 MA/coil

current capacity
I = 22.2 MA/coil
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ITER Magnet System
6 PF coils 18 Correction coils

current capacity
I = 55.8 MA 
(PF1+PF2+PF3+PF4+PF5+PF6)

current capacity
I = 0.32 MA/BCC TCC coil
I = 0.20 MA/SCC coil

PF1
PF2

PF3

PF4

PF5

PF6

TCC

SCC

BCC
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ITER Magnet System
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ITER Superconductors

Conductor current is determined by the maximum 
allowable voltage to discharge the coils
U = L dI/dt
Discharge time constant: 11 s
→ high current conductor required

TF coil: 134 turns x 68 kA = 9.1 MA/coil
CS coil: 556 turns x 40 kA = 22.2 MA/coil

Maximum voltage
30 kV test voltage for CS coils
→ high voltage insulation materials required

Conductor design
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ITER Superconductors
CS coils
Bmax = 13 T
→ Nb3Sn
TF coils
Bmax = 11.8 T
→ Nb3Sn
PF coils
Bmax = 6.4 T
→ NbTi
Correction Coils
Bmax = 6 T
→ NbTi
Feeders
Bmax = 3.5 T → NbTi
Current leads B max = 0.065 T → Bi2223

Superconducting materials
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ITER Superconductors
Superconducting wires
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Industrial manufacture of supraconducting wires

A superconducting wire is
made of superconducting
filaments embedded into
a copper matrix.

The manufacture is
performed in two steps:
- a monofilamentary step
- a multifilamentary step

→ multifilamentary twisted
composite wire
(l ~ km, Ø ~mm) 

ITER Superconductors

Monofilamentary step

Multifilamentary step
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ITER Superconductors

Deep Zoom into ITER CS conductor put together 
by Carlos Sanabria and Peter Lee, FSU  

Multifilamentary twisted composite wire
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ITER Superconductors

• a cable-in-conduit conductor allows 
achieving high transport current, by 
twisting together into a cable several 
hundreds of strands contained in a 
steel pipe internally cooled by a flow of 
supercritical helium
• in a dual channel cable-in-conduit 
conductor, a central channel is 
managed along the conductor axis 

Cable-in-conduit conductors
jacket

cable

central 
spiral
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ITER Superconductors
Multistage twisted cables

Strand 
cabling is 
performed in 
a multistage 
process
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ITER Superconductors
Cable jacketing

Cable jacketing is 
performed in 3 steps:
- Jacket manufacture
- Cable pulling through
- Jacket compaction
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ITER Superconductors

Cable-in-conduit ITER conductors cooled by supercritical He flow at 4.5 K
ITER Conductors
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ITER Superconductors
TF coils CS coilsNb3Sn coils
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PF coils Correction Coils

ITER Superconductors
NbTi coils

2 in hand 
winding
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ITER Superconductors

Intrinsic Strain (%)
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Nb3Sn critical current strain dependence

Nb3Sn critical current is 
highly sensitive to applied 
strain

→ selection of wind and 
react process to minimize 
applied strain
- Winding
- Reaction heat treatment

(650C, 200 h)
- Turn insulation
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Manufacturing status
Nb3Sn industrial production
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Manufacturing status
Conductor manufacture is complete
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Manufacturing status

First TF winding-pack before resin
impregnation

TF coils

First TF case before assembly
with winding-pack
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Manufacturing status

First TF coil delivered to ITER

December 2017

TF coils
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Manufacturing status

CS Module mock-up turn insulation
application

CS Module heat treated

CS coils

Courtesy GA Courtesy GA
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Manufacturing status

CS Module 1 ground insulated CS Module 1 cold testing

CS coils

Courtesy GA Courtesy GA
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Manufacturing status

PF4 2nd double pancake winding

PF coils

PF coils manufacturing hall
Courtesy F4E Courtesy F4E
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Manufacturing status

PF2 resin impregnation preparation

PF coils

PF5 resin impregnated
Courtesy F4E Courtesy F4E
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Manufacturing status

PF1 ground insulated PF6 cold testing preparation

PF coils

Courtesy Efremov Courtesy F4E
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Manufacturing status

BCC1 winding-pack

Correction coils

Prototype BCC case closure welding
Courtesy ASIPP Courtesy ASIPP
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Manufacturing status
Summary

ITER Magnet System component Status 

Nb3Sn conductor lengths Delivered to coil manufacturers

NbTi conductor lengths Delivered to coil manufacturers

TF coils 3 TF coils delivered to IO

PF coils PF6 prepared for cold testing
PF5 resin impregnated
PF4 under winding
PF1 ground insulated

CS coils Module 1 cold tested
Module 2 prepared for cold testing
Module 3 resin impregnated
Module 4 ground insulated
Module 5 under turn insulation application
Module 6 stacked, preparing for heat treatment

Correction Coils 6 BCC coils manufactured, ready for delivery to IO


