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Magnetic confinement

Fusion reaction P Prus = 7 + P
Pi ost f distribution:
Available ga :gg;
on earth n °
fusion
fuels products ‘
To be . Hans Bethe
oroduced Qenergy gain (1904 - 2005)
Q =P, /P Nobel Prize of
Independant travel of charged s Physics 1967
particles: Q = 1 breakeven
— plasma required B o _
Issues: - electrostatic repulsion Q =~ Ignition 1= W/ P\

- energy losses P
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Magnetic confinement

Lawson criterion (1955)

Plasma energy balance: dW/dt =0

Density (n) x confinement time (Tg) x temperature (T)

N.te.T, 1021 (keV.s.m)

John D. Lawson

Fusion routes (1923-2008)
Inertial fusion (sun) Magnetic fusion (ITER)

High density Low density (1020, m-3)

(10¢ . m) High temperature (10 keV)
Low temperature (1.5 keV) Energy confinement tfime 3 s

n.te.T = 3.102!
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Magnetic confinement

Magnetic configurations
linear configuration toroidal configuration

toroidal
<« .
mm> Magnetic radial
U U U B torus . >
C\ major _
Larmor radius: Radius poloidal
r.=m.v1/q.B
Basic Magnetic Mirror Machine: .
Particle : R Magnetic Field Toroidal
gy~ Field
——n varies in
r 5 ’ i
Issue: losses at the ends Issue: vertical drift of particles
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Magnetic confinement

Helical magnetic configurations

The magnetic field lines form a series of
nested magnetic surfaces.

Charged particles remain trapped within
magnetic surfaces

How to achieve it?

stellarator heliotron
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Magnetic confinement

~ Tokamak design (1958) ,
toroidalnaia kamera s magnitnymi katushkami

Inner poloidal field coils
(Primary transformer circuit)

. Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

lgor Lev A.
Kurtchatov Artsimovitch
(1903-1960) (1909-1973)
Geneva — . Novosibirsk
Conference1958 e Conference 1968
Resequhes Resulting helical magnetic field ;roroidal field coils Te > 1 kev
oPening Plasma electric current Toroidal magnetic field TE > 10 ms

(secondary transformer circuit)
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Magnetic confinement

The tokamak route

T1 (Moscow): 1958
13 (Moscow): 1968

'>p.  TFR (Fonfenay-aux-Roses):1973

" JET (Culham):

- commissioning: 1983

| - 15" DT exp. 1991
te o | R2P, 28 - 274 DT exp. 1997

T] TFR
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Magnetic confinement

Copper magnets T - .

Production of magnetic fields in
tokamaks was first achieved using
copper magnets.

JET electric power supply: 400 MW
— motor generator flywheels
required

N |
JET European t

— issue: electrical energy consumption

f: . %}
okamak(

Culom) |
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Magnetic confinement

Superconducting magnets p

The construction of magnets using
superconducting materials allowed a
considerable reduction of the needed
electrical power for production of
magnetic fields and long pulses.

17 (NbTi, Moscow): 1979
Tore Supra (NbTi, Cadarache): 1988
T15 (NbsSn, Moscow): 1988

Tore Supra TF electrical power: 1 MW Tore
Supra
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Magnetic confinement

ITER design | - g
Fusion power 500 MW

Energy gain Q=10

Inductive discharge > 400 s

Large plasma radius 6.2 m

Small plasma radius 20m

Plasma current 15 MA

Toroidal field 53T

. ‘ P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020 Page 11



ITER Magnet System

PF magnet
M= 27461
W=10GJ
(17 MA)

TF magnet
M = 53731
W=41GJ

Total mass:
10 360 t
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ITER Magnet System

18 TF coils 6 CS coils Poloidal cross-section

s \1'

4
[csaL [ cszL | csiL | csiu | eszu [cssu]

Pair of TF Coils
current capacity current capacity ‘b

o ¢+ 2 3 4 5 6 7 8B 9 10 11 12 13

| =9.1 MA/coil | =22.2 MA/coil Hiin
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ITER Magnet System

6 PF coils 18 Correction coils

PF4

. PFé6 ]
current capacity current capacity

| = 55.8 MA | = 0.32 MA/BCC TCC coil

IO /S OS b |
/9GC G COll ‘
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ITER Magnet System

Plasma operation

20
A

plasma initiation

premagnetization ramp up flat top

end of

ramp down - magnetization
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[
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CS —
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Coil Contact Area
on Sides
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ITER Superconductors

Conductor design

Conductor current is determined by the maximum
allowable voltage to discharge the coils
U=Ldl/df

Discharge time constant: 11 s

— high current conductor required

TF coil: 134 turns x 68 kA = 9.1 MA/call
CS coil: 556 turns x 40 kA = 22.2 MA/coll

Maximum voltage
30 kV test voltage for CS coils
— high voltage insulation materials required
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ITER Superconductors

Superconducting materials CS coils
5 Bmax=13T
R
30 4 | TF coils
e \L X Bmax=11.8T
N\
= D Bi2212(1) \ —
3 . ‘ PF coils
= i 3 \\ Brmax =6.4T
_Crg 23.':— " YBC)(_E}\ — NbTi
10 - % \ Correction Coils
™ Bmaox=6T
PF6 CGII__'I‘.dbiTi ‘ S M Ei-z?jﬂﬂ———. —> NbTi
> 0 20 40 60 T 80 Feeders

HTS leads Bmax =3.5T — NbTi
Current leads B max = 0.065 T — Bi2223

Temperature (K)
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ITER Superconductors

Superconducting wires

« For practical applications, the superconductor is subdivided into

which are twisted togetherand of normal

metal (e.qg., pure OFHC Cu for Nb-Tiand Nbs;Sn, Ag or Ag—Au for HTS).

 The superconducting multifilament composites are manufactured under the form of
(with an outer diameter of ~1 mm) or tapes.

BSCCO 2212 Wire

i--.c - I :‘E—-ﬁﬁ‘-'

Nb—Ti Wire for ITER Nbs;Sn Wire for ITER BSCCO 2223 Tape
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ITER Superconductors

Industrial manufacture of supraconducting wires

A superconducting wire is

made of superconducting
filaments embedded into

a copper matrix.

The manufacture is
performed in two steps:

- a monofilamentary step
- a muliiflamentary step

— multifilamentary twisted
composite wire
(I ~km, @ ~mm)

_ERE

ACID CLEANING MULTIFILAMENT ywgppmng BOSTATIC  pyrrisioN BENCH

ACID CLEANING MONOFILAMENT wpppme ISOSTATIC pxTRUSION BENCH DEAWING CUTTING

BILLET ASSEMBLY PFRESSING DRAWING '
i =
3 2 2.

Monofilamentary step

B

BULL BLOCK DEAWING

BILLET ASSEMBLY PRESSING DRAWING
4] n\]
\\__ ;
DRAWING TWISTING FINAL DRAWING TESTING

Multifilamentary step
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ITER Superconductors

Multifilamentary twisted composite wire

CSJA2
HFZ

The Nb;Sn
fracturesatthe
grainboundaries
and thuswesee
the grain
structure across
the filaments.

e

L =

Deep Zoom into ITER CS conductor put together
by Carlos Sanabria and Peter Lee, FSU
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ITER Superconductors

Cable-in-conduit conductors

¢ a cable-in-conduit conductor allows

achieving by cable
twisting together into a cable 4
&

of strands contained in a central

steel pipe internally cooled by a flow of P
supercritical helium

°ina cable-in-conduit
conductor, a central channel is

managed along the conductor axis
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ITER Superconductors

Multistage twisted cables

1xCu 6 x Stage 4 + spiral + wrap
4 x Stage 2
\. 2xNbsSn j 553161 wrap
/ 15t Stag ’?
3t Stage

Strand

4 x Stage 3 +wrap

cabling is SS316L wrap

. 3 x Stage 1
performed in

. th
a multistage # 2 Stage
process
2 Stage

4th Stage
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ITER Superconductors

Cable jacketing

Jacket Welding

Cable jacketing is
performed in 3 steps:
- Jacket manufacture

- COble pU”Iﬂg ThrOUgh Cable Pulling into Jacket
- Jacket compaction

Jacket Compaction onto Cable
L X T
®0®

Spooling into Transport Solenoid
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ITER Superconductors

ITER Conductors
Cable-in-conduit ITER conductors cooled by supercritical He flow at 4.5 K

PF Conductor Nb-Ti
£ g :---g-"i‘j.'

CC Conductor

g

.

-

E CB Conductor
- dumm

i CS( Conduzt)or MB Conductor
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ITER Superconductors

Nb,Sn coils TF coils CS coils

41 ; 633 = CIC
| ' Conductor

Nb,Sn Rope-
Type Cable

756.5-

B

Ty

Double
Pancake

Coll Case

\
Winding Pack

2147.3

Stainless Steel
Radial Plate

P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020 Page 25



ITER Superconductors

NDbTi coils

PF coils

2inhand |
winding

Correction Coils

CC conductor
cross-section

\
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ITER Superconductors

Nb,Sn critical current strain dependence

Nb,Sn critical current is T oratiminary ot

highly sensitive to applied OCS! Strand

strain 150 4 T=42K y
< B=10T -

— selection of wind and 5 100 | Y
react process to minimize  ° ’ o o . a
° ° O & V7 X
applied strain 5 s0- - |

- Winding _ e
- Reaction heat treatment S e B i e
o) et e T T .
(650C, 200 h) 24t
- Turn insulation 10 08 06 04 02 0.0 02

Intrinsic Strain (%)
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Manvufacturing status

Nb,Sn industrial production

e TF and CS strand productlons are

. 1000 1
completed w|th for TF: ~100% complete.

TV Nirpmdy Frodon tuea Dhanbbosrd

' n) for TF and " Total Supply: —511t
~170 tons for CS. :

« It is the largest Nb;Sn strand .
production ever and has called for a ‘ Feb2008 T Feb2016
significant worldwide production ramp up. s @ Nb,Sh for CS: ~100% complee

N gt P e (b e §

» Pre-ITER world production was estimated

. . - : Total Supply: —174 ¢ |
last five years at - 'ye s |x .....-mlll'l'm

mpiled by D. K

at ~ 15 1 /year; it has been steady for the

.................

‘L AR L AEE L 4

“  Mar2013 e 2017
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Manvufacturing status

Conductor manufacture is complete

uonoedwod

Buloods

Cable Insertion

-

Jacket Assembly

s)1591
[eud

Jacket
Production
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Manvufacturing status

TF coils

1

First TF winding-pack before resin First TF cdse before assembly
impregnation with winding-pack
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Manvufacturing status

TF coils

First TF coil deli

b

vered fo ITER

‘ P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020 Page 31



Manvufacturing status

R )

ur’rey GA - — B ' Courfe{y GA
CS Module heat treated CS Module mock up ’rum insulation
application
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Manvufacturing status
CS coils

Courtesy GA

Courtesy GA

CS Module 1 ground insulated CS Module 1 cold testing
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Manvufacturing status

PF coils

o

Courtesy F4E Courtesy F4E

PF4 2nd double pancake winding PF coils manufacturing hall
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Manvufacturing status

PF coils

'. = —I
\ \"‘
L > r A
- N
pRITR

Courtesy F4E Courtesy F4E

PF2 resin impregnation preparation PF5 resin impregnated

‘ P. Libeyre, EASISchool3 Summer School, Genoa, 09 October 2020 Page 35



Manvufacturing status

PF coils

Courtesy Efremov Courtesy F4E

PF1 ground insulated PFé cold testing preparation
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Manvufacturing status

Correction coils

N

Courtesy ASIPP ' Courtesy ASIPP

BCC1 winding-pack Prototype BCC case closure welding
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Manvufacturing status

Summary

ITER Magnet System component Staws

TF coils 3 TF coils delivered to IO

& china eu india j
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