THE FUTURE CIRCULAR COLLIDER PROJECT: GOALS & CHALLENGES

ISTITUTO Nazionale di Fisica Nucleare

PATRIZIA AZZI - INFN PADOVA (ITA)

EASITrain School – Oct 2020

THE STANDARD MODEL OF PARTICLE PHYSICS

The SM and... the LHC data so far

[slide of C. Grojean]

Particle Physics has arrived at an important moment of its History

1989-1999:

- Top mass predicted (LEP m_z and Γ_z)
- Top quark observed at the right mass (Tevatron, 1995)
- Nobel Prize 1999 (t'Hooft & Veltman)

- It looks like the Standard Model is complete and consistent theory
- It describes all observed collider phenomena and actually all particle physics (except neutrino) masses)
- > Was beautifully verified in a complementary manner at LEP, SLC, Tevatron, and LHC EWPO radiative corrections predicted top and Higgs masses assuming SM and nothing else \blacktriangleright With mH = 125 GeV, it can even be extrapolated to the Plank scale without the need of New Physics.

Is it the END?

THE PHYSICS LANDSCAPE

Nobel Prize 2013 (Englert & Higgs)

- Yet the Standard Model cannot explain certain experimental observations, such as:
 - the striking evidence for dark matter
 - ► SM Particles make up only 5% of Universe!
 - ► the abundance of matter over antimatter
 - ► the non-zero neutrino masses.
- Plus, the small Higgs boson mass hints to crucial questions specific to the nature of the theory at TeV scale
- All these point to the existence of physics beyond the Standard Model.

SO MANY OPEN QUESTIONS!

here is trendedy

- Is new physics at larger masses ? Or at smaller couplings ? Or both ?
 - No experimental hints as to the origin of these observed (unexplained) phenomena
 - There is no theoretical hints that would point to one direction more than another
- > Only way to find out: go look, following the historical approach:
 - \blacktriangleright Direct searches for new heavy particles \Rightarrow Need colliders with larger energies
 - Searches for the imprint of New Physics at lower energies, e.g. on the properties of Z, W, top, and Higgs particles \Rightarrow Need colliders / measurements with unprecedented accuracy

WHICH WAY TO GO?

powerful as possible – as there is no specific target

More SENSITIVITY, more PRECISION, more ENERGY

- Future Circular Colliders (FCC) offer the most adapted response to this situation
 - Largest luminosity
 - highest parton energy
 - synergies and complementarities between ee and pp, etc

WHICH TYPE OF COLLIDER?

The next facility must be versatile with a reach as broad and as

NOW (LHC) : pp 13 TeV, 300 fb⁻¹

THE COLLIDERS OF TODAY AND TOMORROW

NEXT FUTURE (HL-LHC) : pp 14 TeV, 3000 fb⁻¹

(2024) The LHC tunnel will be used once again for another machine: the HL-LHC. To be able to function with the new accelerator the experiments will be upgraded as well

> Aim at 3000 fb⁻¹ pp collisions at $\sqrt{s} = 14$ TeV

- Higher luminosity means a large number of extra-interactions per bunch crossing
 - > to be precise $<\mu>$ = 200 more extra collision overlapping with the < interesting one > (pileup)

THE NEXT FUTURE (2024): HL-LHC

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment

Careful studies and projections for the physics at the HL-LHC we have shown: > we have designed amazing detectors that will be able to fully mitigate the 200PU conditions uncertaintities on Higgs couplings of the order of 2-4% and top mass about ~200MeV This precision might still not be sufficient to show the effect of new physics...

AFTER HL-LHC

A CONCRETE TARGET: THE HIGGS BOSON

11

8/10/2020

SISchool3

patrizia az

A CONCRETE TARGET: THE HIGGS BOSON

THE FUTURE: THE FCC INTEGRATED PROJECT

- Build a new 100 km tunnel in the Geneva region
- Ultimate goal: highest energy reach in pp collisions: 100 TeV
 - need time to develop the technology to get there
- First step: extreme precision circular e+ecollider (FCC-ee)
 - variable collision energy from 90-360 GeV (beyond top threshold)
- As for the LEP+LHC, one tunnel for two complementary machines covering the largest phase space in the high energy frontier
 - a complete physics program for the next 50 years

p-p collisions

Proton is compound object

- \rightarrow Initial state not known event-by-event
- → Limits achievable precision

High rates of QCD backgrounds

- \rightarrow Complex triggering schemes
- \rightarrow High levels of radiation

High cross-sections for **colored-states**

High-energy **circular** pp colliders feasible

e+e- VS pp COLLISIONS - EVENT CHARACTERISTICS

e⁺e⁻ collisions

e⁺/e⁻ are point-like

- \rightarrow Initial state well defined (*E*, **p**), polarisation
- → High-precision measurements

Clean experimental environment

- → Trigger-less readout
- → Low radiation levels

Superior sensitivity for **electro-weak states**

- At lower energies (≤ 350 GeV), **circular** e⁺e⁻ colliders can deliver very large luminosities.
- Higher energy (>1TeV) e⁺e⁻ requires **linear** collider.

FCC-ee ENERGY RANGE AND LUMINOSITY

- High integrated luminosity at the needed Ecm
- Clean environment
- precise knowledge of the center-of-mass energy and of the luminosity
- precise detectors offering plenty of redundancy (and more than one)

Can produce all the heaviest particles of the Standard Model

Phase	Run duration	Center-of-mass	Integrated	Event	
	(years)	Energies (GeV)	Luminosity (ab ⁻¹)	Statistics	
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays	LEP x 10 ⁵
FCC-ee-W	2	158-162	12	10 ⁸ WW events	LEP x 2 · 1
FCC-ee-H	3	240	5	10 ⁶ ZH events	Never dor
FCC-ee-tt	5	345-365	1.5	$10^6 t\overline{t}$ events	Never dor
 Total r (~LEP) Ionga 196 l thres 	unning time er shutdown to RF for operation shold	14(+1)years		WW HZ Top ×10 ×10 ×10	

FCC-ee RUN PLAN

FCC-ee: A DISCOVERY MACHINE AND MORE

> **EXPLORE** the 10-100 TeV energy scale region with precision

- > 20-50 fold improved precision on EWK observables
- 10 fold more precise and model-independent Higgs coupling measurements

DISCOVER that the Standard Model does not fit

- Allows understanding of the underlying physics structure
- > **DISCOVER** a violation of flavour conservation/universality
 - Flavour physics in 1012 bb events (B0 \rightarrow K*0 τ + τ -, BS \rightarrow τ + τ -, ...)
- > DISCOVER dark matter as invisible decays of the Z or Higgs
- DISCOVER feebly coupled particles in the 5-100 GeV mass range
 - Such as right handed neutrinos, dark photons, ...

measurements of the properties of the Z,W,Higss and top particles

17

Unpolarized cross sections

- Recoil method unique to lepton collider: Tag Higgs event independent of decay mode
- Precision measurements: couplings, mass, width
- Searches for Exotic Higgs, invisible decays

HIGGS PHYSICS AT THE FCC-EE

PRECISION ELECTROWEAK MEASUREMENTS

Lineshape

- Extremely precise *E*_{beam}
- $m_{Z_{z}} \Gamma_{Z}$ to < 100 keV (2.2 MeV)

Asymmetries

- □ $\sin^2\theta_{W}$ to 6×10^{-6} (1.6 × 10^{-4})
- $\alpha_{\text{QED}}(m_z)$ to 3×10^{-5} (1.5 × 10^{-4})

Branching ratios R_I, R_b

 $\Box \alpha_{s}(m_{z})$ to 0.0002 (0.002)

Threshold scan

 \square $m_{\rm W}$ to 0.5 MeV

Branching ratios R_I, R_b

 $\Box \alpha_{\rm S}(m_{\rm Z})$ to 0.0002

Radiative return $e^+e^- \rightarrow Z\gamma$

 \square N_v to 0.0004

tt threshold scan: MegaTop

(12 MeV)

(0.008)

Threshold scan

- m_{top} to 10 MeV (500 MeV)
- λ_{top} to 10%
- EW couplings to 1%

Today Λ_{NP} > 5-10 TeV, after FCC-ee Λ_{NP} > 50-100 TeV Points to the physics to be studied with FCC-hh

patriz

Numerology for 10ab⁻¹ @100TeV 10¹⁰ Higgs bosons => 10⁴x to 10¹² top quarks => 5 10⁴ x too =>10¹² W bosons from top decard

- > =>10¹² b hadrons from top deca
- ► =>10¹¹ t->W->taus
- few 10¹¹ t->W charm hadrons

Amazing potential, extreme detector and reconstruction challenges

NUMEROLOGY FOR FCC-hh

oday	 →precision measurements →rare decays →FCNC probes: H->eµ
day ays ays	 ⇒precision measurements ⇒rare decays ⇒FCNC probes: t->cV (V=Z,g,γ), t->cH ⇒CP violation ⇒BSM decays ???

→rare decays τ ->3µ, µγ, CPV →rare decays D->µ+µ-,... CPV

FCC-hh DISCOVERY POTENTIAL (HIGHLIGHTS)

- \blacktriangleright Highest parton centre-of-mass energy \rightarrow A BIG STEP IN HIĞH MASS REACH
 - \blacktriangleright Strongly coupled new particles, new gauge bosons (Z', W'), excited quarks: up to 40 TeV!
 - Extra Higgs bosons: up to 5-20 TeV
 - High sensitivity to high energy phenomena, e.g., WW scattering, DY up to 15 TeV
 - Direct New Physics production at FCC-hh complemented with quantum effects at FCC-ee
- Huge rates of SM particles (H, W, Z, t, b, ...) in single/multiple production
 - Precise determination of triple Higgs coupling; Access to quartic coupling.

 - searches) & Long-lived particles
- \succ SM particles produced at high p_T with large statistics Allows cleaner signals for channels that are currently difficult at LHC

Rich top and heavy-flavour programme: 10¹² top quarks and 10¹⁷ b quarks produced > Search for invisibles (invisible Higgs decay [\rightarrow 10⁻⁴], RH neutrinos in W decays, DM

The FCC integrated program (ee, hh, eh) has built-in synergies and complementarities It will provide the most complete and model-independent studies of the Higgs boson

FCC-ee provides 10^6 HZ + 10^5 WW \rightarrow H events

Absolute determination of g_{HZZ} to ±0.17%

Model-independent determination of $\Gamma_{\rm H}$ to ±1%

- → Fixed « candle » for all other measurements including those made at HL-LHC or FCC-hh
- \rightarrow Measure couplings to WW, bb, $\tau\tau$, cc, gg, ... **Even possibly the Hee coupling!**
- \rightarrow First sensitivity to g_{HHH} to ±34% (±21% with 4IP)

FCC SYNERGIES: THE HIGGS BOSON

FCC-eh provides 2.5 10⁶ Higgs bosons With the FCC-ee candle, further improves on several measurements (e.g., g_{HWW})

Projected precision of λ 3 measurements

FCC SYNERGIES: TRIPLE HIGGS COUPLING

Higgs@FC WG November 2019

FCC integrated program will measure λ_3 to the 5% level

All future colliders combined with HL-LHC

FCC SYNERGIES: FEEBLY INTERACTING PARTICLES

Heavy Right-Handed Neutrinos

arXiv:1906.02693, FCC-ee: Your questions answered

e+e- collisions

	0)
$\frac{\sqrt{s}}{Physics}$	mz	2m _W	HZ max. 240-250 GeV	2m _{top} 340-380 GeV	500 GeV	1.5 TeV	3 TeV	28 TeV 37 TeV 48 TeV	100 TeV	Leading Physi Questions
Precision EW (Z, W, top)	Transverse polarization	Transverse polarization		m_{W} , α_{S}						Existence of more Interacting partic
QCD (α_{s}) QED (α_{QED})	5×1012 Z	3×10 ⁸ W	105 H→gg							Fundamental cons and tests of QED/
Model-independent Higgs couplings	ee √s	H S = m _H	1.2×10 ⁶ HZ ar at two e	nd 75k WW→H energies					<1% precision (*)	Test Higgs natu
Higgs rare decays									<1% precision (*)	Portal to new phy
Higgs invisible decays									10-4 BR sensitivity	Portal to dark ma
Higgs self-coupling			3 to 50 from lo to Higgs cr	oop corrections oss sections					5% (HH prod) (*)	Key to EWSB
Flavours (b, τ)	5×1012 Z									Portal to new phy Test of symmetr
RH ν 's, Feebly interacting particles	5×1012 Z								1011 W	Direct NP discov At low coupling
Direct search at high scales					M _x <250GeV Small ∆M	M _χ <750GeV Small ∆M	M _χ <1.5TeV Small ∆M		Up to 40 TeV	Direct NP discov At high mass
Precision EW at high energy							Y		<i>W, Z</i>	Indirect Sensitivit Nearby new phys
Quark-gluon plasma Physics w/ injectors										QCD at origin

Green = Unique to FCC; Blue = Best with FCC; (*) = if FCC-hh is combined with FCC-ee; Pink = Best with other colliders;

pp collisions

known knowns

Standard Model

unknown knowns

new physics modifies known physics

and maybe we already measured it!

FUTURE COLLIDERS TAKE AWAY MESSAGE

"known" new physics

unknown unknowns

unknown knowns

new physics modifies known physics

and maybe we already measured it!

unknown knowns

new physics modifies known physics

and maybe we already measured it!

unknown unknowns

unknown unknowns

The FCC is an ambitious project for the future of particle physics with concrete goals and deliverables to find the answers that we need from Nature!

FIND OUT MORE: FCC DOCUMENTATION

4 CDR volumes published in EPJ

FCC PhysicsOpportunities

FCC-hh: The Hadron Collider

FCC-ee: The Lepton Collider

HE-LHC: The High Energy Large Hadron Collider

- Future Circular Collider European Strategy Update Documents
 - ► (FCC-ee), (FCC-hh), (FCC-int)
- FCC-ee: Your Questions Answered
 - arXiv:1906.02693
- \succ Circular and Linear e+e- Colliders: Another Story of Complementarity
 - ► arXiv:1912.11871
- Theory Requirements and Possibilities for the FCC-ee and other Future High **Energy and Precision Frontier Lepton** Colliders
 - ➤ arXiv:1901.02648
 - Polarization and Centre-of-mass Energy Calibration at FCC-ee
 - ► arXiv:1909.12245

