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The Lossy Transmission Line Theory :

Introduction

Transmission Line Theory (TLT):
Objective: Complete characterization of propagative waves in PEC

surrounded waveguides by means of TL parameters.

↕
Mathematically: characterization of the closed-form homogeneous

solutions to □2 when “ideal” BCs (Dirichlet & Neumann) and xi -

invariance are imposed.

Lossy TLT (LTLT):
Generalization: The lossless case is only a particular case, among

others.

↕
Mathematically: nonhomogeneous solutions to □2 with general BCs.
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The Lossy Transmission Line Theory :

Introduction

LTLT:
• TEM modes, i.e. plane waves ↔ analytic solutions in multiple

connected planar (e.g. z-invariant) regions.

• Easily described in the frequency domain ↔ time (harmonic) FT
(coordinates on ejt basis).

• Complex functions and parameters → Complex Analysis.

Fig. 1. Two-conductor waveguide that supports the TEM mode 

represented in some cylindrical coordinate system.
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The Lossy Transmission Line Theory :

Basis

From the analyticity of TEM solutions in ST, the integration of the

Maxwell equations unequivocally leads to the Telegrapher’s equations

(written in the frequency domain):

dV(z)
dz

= − (R+jL)·I(z) ; R =  · H12/ℓ2 , L =  · H12/ℓ2  ℝ+

dI(z)
dz

= − (G+jC)·V(z) ; G =  · ℓ2/H12 , C = · ℓ2/H12  ℝ+
;

where, using generalized orthogonal coordinates on ST: (t1,t2);

H12 = t1 h1/h2h dt1 , ℓ2 = t2 dt2 , (e.g. polar coord.: t1=r, t2=).

Line parameters

zST

t1

t2
Fig. 2. General orthogonal 

coordinate system.
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The Lossy Transmission Line Theory :

Basis

Solutions:

V(z)=V
0

+e-kz + V
0

−e+kz = V
0

+e-kz (1+ 0e
-2kz) ,

I(z)=I
0

+e-kz - I
0

−e+kz = (V
0

+/Z0) e-kz (1- 0e
-2kz) ;

Z0 =V
0

+
/I
0

+
=V

0

−/I
0

− =
R+jL
G+jC

, k = (R+jL)(G+jC) = +j  ℂ

V(z)/I(z) = Z(z) = 1/Y(z) = Z0

1+(z)

1−(z)
; (z) = 0e

2kz

Basic parameters

Wave parameters
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The Lossy Transmission Line Theory :

Analysis

Basic parameters

(fixed frequency analysis, 0)

Parameterizations:

൝
r=R/(0L)

g=G/(0C)

Normalizations :

Z0n1 = Z0/Z0,lossless =
1−jr
1−jg

kn1 = k/lossless = j (1−jr)(1−jg)
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Fig. 3. Normalized (a) characteristic 

impedance and (b) propagation constant.
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The Lossy Transmission Line Theory :

Analysis

Wave parameters

Normalizations :

Zn0 = Z/|Z0|; Yn0=Y|Z0|; 

Z0n = Z0/|Z0| = ejZ0

Parameterizations:

ቊ
Z0

(Z
n0

′
,Zn0
′′ ) or (|Zn0|,Z)

;

ቊ
Z0

(Y
n0

′
,Yn0

′′ ) or (|Yn0|,Y)
;

ቊ
Z0

(,) or (||,)
.
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Fig. 4. Transformations of the real and imaginary 

parts of the Zn0-plane into the -plane.
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The Lossy Transmission Line Theory :

Analysis

Wave parameters

Normalizations :

Zn0 = Z/|Z0|; Yn0=Y|Z0|; 

Z0n = Z0/|Z0| = ejZ0

Parameterizations:

ቊ
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;
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The Lossy Transmission Line Theory :

Analysis

Wave parameters

Normalizations :

Zn0 = Z/|Z0|; Yn0=Y|Z0|; 

Z0n = Z0/|Z0| = ejZ0

Parameterizations:

ቊ
Z0

(Z
n0

′
,Zn0
′′ ) or (|Zn0|,Z)

;

ቊ
Z0

(Y
n0

′
,Yn0

′′ ) or (|Yn0|,Y)
;

ቊ
Z0

(,) or (||,)
.
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The Lossy Transmission Line Theory :

Analysis

Example of analysis: Wave parameters along the TL

 = Le
-2kl (logarithmic spiral in the -plane)
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RF and SRF cavities: a different approach

Introduction

Example: TM010-like mode on pill-box cavity.

Solve : 2Ez + k2Ez = 0, which particularizes to :
r2r

2[R(r)] + rr[R(r)] + r2k2 R(r)=0, R(r)C2

where ki=/c  ℝ+ on Di=[0,r0)[-,)[0,d],

and ko= c0  ℂ on Do=(r0,∞)[-,)[0,d];

subject to |R(0)|<∞ (finiteness)

(|R(∞)|<∞ automatically verifies since ko  ℂ).

General Sol : ൝
AJ0(ar) on Di

B1H
(1)
0(br)+B2H

(2)
0(br) on Do

;

Di

Do

r0

Fig. 7. Geometry and domains of the 

canonical pill-box problem. 
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RF and SRF cavities: a different approach

The high-losses case

In Do: ||/(0) >> 1  asymptotic analysis of solutions:

B1H
(1)
0(br)+B2H

(2)
0(br)  (B1/ r)e-kor + (B2/ r)e+kor  

 B1(e
-or/ r)e-jor + B2(e

+or/ r)e+jor 

 B1e
-kor + B2e

+kor 

Proposition 1: Asymptotically, the behavior of any kind of waves in 

high-lossy media may be studied by means of LTLT.

Di

Do

r0

TL-like propagative waves!

Z0,k  ℂ

z
||/(0) >> 1 >> 0

|Z0| → 0

|k| → ? (in general: |k| >> 1)

Fig. 7. Geometry and domains of the canonical pill-box problem. 

Fig. 8. Equivalent 

TL representing the 

high-lossy media. 9



RF and SRF cavities: a different approach

The high-losses case

R=0  r=0  ;  g = /(-)  (<  0!)    ( ℂ from the two-fluid model)

Particular cases :

Normal conductor (Z0 → /4, k → /4):  Z0 → Rs(1+j), k → (1/)(1+j)

Superconductor (Z0 → /2, k → 0) → Z0 → Roe
j/2, k → 1/L

Fig. 9. Normalized (a) characteristic impedance and (b) propagation constant 

for good conductors.

(a)

(b)
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RF and SRF cavities: a different approach

The Lossy TLT connection

(i) The surface impedance of the cavity walls is the

characteristic impedance of the asymptotic approximation

of the waves which propagate along lossy media.

(ii) The cavity itself behaves as a generator for these waves

(as long as e>>1, regarding the “antenna” which keeps the

fields inside static).

(iii) The impedance of the generator would play the role of the

impedance of that “antenna”. Then, the maximum transfer

of power (Jacobi’s law) would represent the matching

between the antenna and the cavity.

Z0,k  ℂ

z

Fig. 10. Proposed 

equivalent circuit for the 

cavity characterization.
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Example of application

Optimization of thin films in terms of Rs

Problem: To analyze the Rs at the input (cavity-film interface) in

terms of film thickness (d) and choose the minimum (optimum).



'

sc Z0

'

'


oc
l = /4

|   | =1

oc

Zn
''

Zn
'

oc

l =

0

0

Z0


/4

d

0,/c 0,/c

Fig. 11. Wave parameter characterization of the vacuum-thin film-vacuum structure.
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Proposition 2 : The structure vacuum-(super)conductor-vacuum

optimizes the Rs when a thin film of d=/4 is used in the middle.

Example of application

Optimization of thin films in terms of Rs

Example (good conductor): =5.8e7 [S·m-1]

l =

Z0



/4

d

0,/c 0,/c

A thin film of d=/4 (~4.83m at 400MHz) leads to an input

resistance of 0.917·Rs !!

Fig. 11. Wave parameter characterization of the vacuum-thin film-vacuum structure.
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Limitations. Proposals. Conclusions

Limitations

(i) Depending on the SC state (given by |g|=/), it may be

difficult to synthesize a thin-film /4. (from m to nm).

(ii) However, the more SC the thin-film is, the more accurate is

the asymptotic approximation.

(iii) The actual equivalent Rs is not the Rs at the surface

(E(0)/H(0)) anymore but it is given by the definite integral

of the ratio of the fields in the range [0,d], that is, the wave

impedance along the TL.

Proposals

(i) To use this analysis to study multilayer structures that lead

to minimize the integrated Rs.

(ii) To study the viability of using more complex TL structures

(e.g. parallel stubs) and use the asymptotic analysis to study

more designs (e.g. (and especially) periodic structures).
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Limitations. Proposals. Conclusions

Conclusions

(i) The LTLT is connected to the characterization of propagative

waves in high lossy media where the cavity -inevitably-

“radiates” the inner fields. The link is by means of the

asymptotic analysis of the solutions, which is possible thanks

to the high losses. In this sense, a complete equivalence

between the cavity and the TL has been given.

(ii) The usual definition of Rs at the cavity-wall interface is only

valid as limit when d>>. As explained and exemplified, thin-

films behave differently.

(iii) The geometrical analysis of the curves represented in the

planes associated to each TL parameters becomes very helpful.

(iv) A simple but illustrative example with practical application on

thin-films deposition has been presented. From the example,

and using the angle conservation property of conformal

mappings, any multilayer structure may be analyzed.
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