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Cryogenics for superconductivity

Critical parameters for the superconducting state:  temperature, current density, magnetic flux

→ cryogenics is required

Courtesy: D. Larbalestier et al., "High-Tc Superconducting Materials for Electric 
Power Applications," Nature 141, 368 (2001).

T < 120 K
Cryogenics:

Critical surface
of a superconductor

T<Tc B, I
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FCC background

LHC FCC
Centre-of-mass energy, 
TeV

14 100

Circumference, km 27 100

Equivalent cooling
power @ 4.5 K

140 kW ~1 MW

Input power for
cryogenics

40 MW ~200 MW

F. Lebrun, L. Tavian
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Beam screen cooling requirements

Helium 57-61.9 K
(thermal shielding)

Beam screen

Helium 1.9 K
(magnets cooling)

Accelerator tunnel Magnet cross-section

Helium 40-57 K

Courtesy: I. Bellafont et al. Summary of modelling studies on 
the beam induced vacuum effects in the FCC-hh. 2019. Courtesy: CERN 
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Beam screen cooling requirements
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Beam-screen temperature, Tbs [K]

Useful Qbs Useful Qcm Useful total

Forbidden operating temperature (vacuum 
and/or beam impedance restrictions)

Courtesy: L.Tavian→ Energetically cheaper to extract energy at higher
temperature level,

but the heat load to the magnets increases with T
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→ 40-60 K is an optimum for the FCC beam screen
incl. restrictions
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Beam screen cooling requirements

Courtesy: L. Tavian, CERN

Cryogenic system layout 
of FCC-hh

FCC-hh cryogenic facilities layout Nelium cycleFCC cryogenics: 10 cryogenic plants within 100 km

Cooling power per plant: 

T, K Q, kW

Magnets 1.9 K 12
Beam screen & thermal 
shield 40-60 K 620

HTS Current leads 40-300 K 85

Turndown ratio: QBS+TS → 3.5

Project objective: improvement of the Turbo-Brayton cryogenic 
refrigerator concept (H. Quack, TUD) for the beam screens and thermal 
shields cooling fitting cooling requirements at all operational modes

→ Separate refrigerator optimised for the beam screen 
and thermal shield cooling can be more efficient
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Working fluids

→ Neon-helium mixture (Nelium) is used to balance between good heat transfer properties and the number of
the turbocompressor stages

→ Equations of state of the neon-helium mixture: model of J. Tkaczuk et al.  (2020) Equations of State for the 
Thermodynamic Properties of Binary Mixtures for Helium-4, Neon and Argon

NEON HELIUM HYDROGEN

Molar mass (g/mol) 20,179 4,003 2,016

Critical T / P (K / bar) 44,5 / 26,8 5,2 / 2,3 33,1 / 13,0

Triple point T / P (K / bar) 24,6 / 0,43 2,17 / 0,05* 13,8 / 0,07

Density @ 300 K, 1 bar (kg/m3) 0,808 0,160 0,081
Isobaric heat capacity
@ 300 K, 1 bar (kJ/kg·K) 1,03 5,19 14,31

Thermal conductivity 
@ 300 K, 1 bar (W/m·K) 0,048 0,156 0,187

*Lambda point Courtesy: J. Tkaczuk et al.
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Cryogenic cycle design

Courtesy: Linde Engineering

Courtesy: MAN

Screw Compressor

AftercoolerHeat exchanger

Turbo-expander Heat
exchanger
@ 40-60 K

Courtesy: SKF

Simple reverse Brayton cycle

300 K

Oil-free turbocompressor

Courtesy: MAN

High efficiency: (ηs~0.75…0.9)
High reliability
Efficient part-load control
High initial cost 
High number of compressor stages for light gases

→ Standard for helium refrigerators
Low initial cost 
Low efficiency (ηT~0.5...0.55)
Oil removal system (pressure losses)

Ne+He
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Cryogenic cycle design: limitations

1. Turbo-compressor design
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Number of required compressor casings
depending on the helium content

(M. Podeur, University of Stuttgart; MAN)

→ One tandem compressor (with 2 casings) is economically feasible

→ Required pressure ratio ~ 6-7

Maximum pressure ratio of 1 compressor stage

→ For the compressor design refer to the talk 
of M. Podeur (University of Stuttgart)
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Cryogenic cycle design: limitations

→ Different cycle architectures were compared:

- to reduce the cycle pressure ratio

- to keep the coldbox size feasible

- to increase the helium content for higher efficiency0
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2. System size and gas mass

Coldbox of the 4.5 LHC refrigerator
Courtesy: CERN

→ Python library developed for cycle simulation („CryoSolver“)
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Cryogenic cycle design: proposed architecture

Specification of designed system:

→ Reverse Turbo-Brayton cycle

→ Neon-helium mixture (Nelium) as a working fluid instead of a 

conventional helium cycle with LN2 pre-cooling

→ Multi-stage turbocompressor (ηs~0.75…0.9) instead of a screw 

compressor (ηT~0.5...0.55) and without oil removing

→ Turbine power recovery

Flow diagram of the Nelium Turbo-Brayton cycle

≈38 % of Carnot efficiency with 10.3 MW 
power (instead of 30 % for the helium cycle)Courtesy: MAN Energy Solutions

Turbocompressor developed at University of Stuttgart (M. Podeur) and at MAN 
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Part-load operation

Part-load strategy: variation of rotational speed & removing the gas (buffer)

→ Turbocompressor control – best efficiency line operation (φin=const) of the 
1st casing

Estimated buffer volume: 15.6 m3, dead mass: 64 kg (~11 % of the total mass) 
→ acceptable

Casing 1 Casing 2

m2=const
m2-dm

VMC2in=
𝑎𝑎
𝜌𝜌(𝑝𝑝)

Compressor map based on data of MAN, M. Podeur

→ Reduction of the massflow
through the pre-cooling turbine 
compared to the designed 
massflow helps to stay on the best 
efficiency line of the casing 2



Technical University Dresden
Bitzer Chair of Refrigeration, Cryogenics and Compressor Technology // Sofiya Savelyeva
Student workshop on superconductivity and applications, Genoa // 08.10.2020

Slide 14

Cooldown operation

Possibility of the refrigerator usage for the initial magnet cooldown
from 300 to 40 K was studied

→ turbines power availability checked from the preliminary design

→ cycle operation in parallel turbine switch mode evaluated

Maximum cooling power provided by the turbines Parallel turbine switch for the cooldown mode
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Cooldown operation

Co-simulation of the refrigerator operation at maximum turbine power and the magnet half-cell cooling 
realised in Python

→ Cooldown from 300 to 40 K can be done within 15 days (ideal value, but fitting the requirements)

Magnet half-cell cooldown time to 40 K Temperature difference within magnets during cooldown
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Conclusion

Work done:

- Analysis of different cryogenic system architectires for the FCC BS & TS cooling at 40-60 K 

- Improved design of the Nelium Turbo-Brayton cryogenic refrigerator for the FCC

- Efficient part-load operation with the turndown ratio of 3.5 is expected

- Cooldown of accelerator magnets down to 40 K is possible within the required time

Additionally studied:

- Natural neon-helium mixture production from the air (Ne:He ~ 3:1)

- Downscaling possibilities for industrial HTS applications
PhD Thesis in 

progress…
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Thank you
for your attention…

&
for the amazing 3 year-long

journey with
EASITrain!

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the
European Union’s H2020 Framework Programme under Grant Agreement no. 764879
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