

From QPR to 1.3 GHz cavities

Lorena VEGA CID on behalf of all the CERN colleagues from BE-RF, TE-VSC and TE-CRG contributing to these studies.

Special thanks to A. Bianchi, G. Rosaz, G. Vandoni, P. Vidal and W. Venturini

8th October 2020

CERN R&D on thin films

Niobium on copper

Technology used historically at CERN. Interest in developing the RF performance

HIE-ISOLDE

A15 on copper Investigate new materials with potential SRF applications.

LHC

RF characterization of thin films

Colleagues from different groups and fields are involved in the R&D activities

Path from QPR to coated cavities

Finding a recipe for a good QPR sample

Coating two 1.3 GHz cavities with the QPR recipe

N2: Fully coated with the same QPR recipe (HiPIMS)N3: Cut-off tubes coated with positive bias

HiPIMS. The same QPR recipe for the cell.

Comparing QPR and cavity results

Can we predict a cavity performance from QPR measurements?

Influence of impinging angles on coating morphology

✓ HiPIMS technique allows to achieve denser layer in all the orientations.

This technique may still need specific optimization for the cavity geometry.

Influence of the quality of the substrate

- Welds are potential sources of defects, holes may trap chemicals and contaminate the SC layer.
- ✓ Use seamless substrates: this solved the problem for HIE ISOLDE cavities (100 MHz and 4.5 K)→ not a Nb/Cu thin film specific issue

To be done

- Use electroformed substrate
- Machine from bulk a 1.3 GHz cell to get a high quality substrate

Influence of the quality of the substrate

- Defects in substrate are propagated to the coating.
- Last 2 cavities were spun and then treated at JLab (tumbled), nonetheless
 some defects were still present

To be done

Install thermal mapping system to localize defects.

Understanding Q drop with simulations

- Thermal quenches are not observed in niobium on copper cavities.
- The temperature increases locally in presence of defects, but thanks to the high thermal diffusivity of copper, heat quickly spreads and the temperature of Nb film is maintained below Tc in steady-state conditions.
- As a result, an area of increased temperature (thus, increased Rs) surrounds the defect: This contributes to the global surface resistance, leading to Q drop.

High thermal diffusivity in copper: High spread of temperature!

Q drop in presence of defects

$$\downarrow Q = \frac{\omega U}{\frac{1}{2\mu} \int_{S} R_{S}(B,T) ||B||^{2} dS} = \frac{G}{R_{S}(B,T)} \uparrow$$

Data calculated for 16 MV/m

Building the model

- Correct definition of thermal properties are key to obtain realistic results.
- ✓ Parametrize the properties in function of RRR and temperature!

He I has a rather small thermal conductivity and large specific heat:

- Conduction heat transport is of little significance to the overall heat transfer
- Heat transport is dominated by convection mechanisms.

Calculate separately contribution from natural convection of bulk and bubble hydrodynamics:

□ Use empirical fit (*C. Schmidt, "Review of steady state and transient heat transfer in pool boiling He–I", Proceedings of the* SaclayWorkshop on Stability of Superconductors in He-I and He-II, International Institute of Refrigeration, Paris, 1982, pp. 17-31) :

Graph for flat Cu samples facing upward, different roughness: The rougher, the more efficient the cooling. In yellow, *Van Sciver, S. W. (2012). Helium cryogenics. Springer Science & Business Media.*

8th October 2020

- According to experimental data: 5000-15000 W/m²
- <u>Orientation needs to be accounted!</u> Note that having a defect in the cell below the equator can lead to a considerable decrease in the heat transfer efficiency.

Lyon, D. N. (1965). Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid helium between the lambda and critical temperatures. Adv. Cryog. Eng., 10, 371.

- Liquid He is heavier than vapour so the tendency is to rewet the surface.
- The waves at the interface liquid-vapor oscillate with amplitude η: They must be damped for the interface to be stable, otherwise the amplitude would grow beyond the vapor film thickness and rewet the surface.
- Typical values of heat transfer coefficient are 100 to 2000 W/m²K (C. Schmidt, International Institute of Refrigeration, Paris, pp. 17-31, 1982)
- A value of 250 W/m²K is selected based on *Paudel, D, Quench Simulation of Superconducting Magnets with Commercial Multiphysics Software, CERN-THESIS-2015-090, 2015.*

	Q (W/m²)	Regime	h	Equation
He I	<10	Natural convection	500 W/m ² K	Q=h(T _s -T _{He})
	10 <q<10000< th=""><th>Nucleate boiling</th><th>10000 W/m²K^{1.5}</th><th>$Q=h(T_s-T_{He})^{2.5}$</th></q<10000<>	Nucleate boiling	10000 W/m ² K ^{1.5}	$Q=h(T_s-T_{He})^{2.5}$
	>10000	Film boiling	250 W/m ² K	Q=h(T _s -T _{He})

De	Details of "Convection"						
Ξ	Definition						
	Туре	Convection					
	Film Coefficient	Tabular Data					
	Coefficient Type	Difference of Surface and Bulk Temp					
	Ambient Temperature	4.2 K (ramped)					
	Commention Markets	Des many Constantiant					

Definition of material properties

- Heat flux mapping: The RF loads are imported from CST to ANSYS Mechanical
- To do this across the dissimilar mesh interface used in each of these softwares, the nodes of the CST mesh are mapped to the local coordinates of a node/element in the ANSYS mesh.

	Α	В	С	D
1	X Coordinate	Y Coordinate	Z Coordinate	Heat Flux
2	-26.3972	71.2745	-39.2011	107.66228227
3	-0.0659	103.3000	-0.0825	112.04342790
4	-2.1641	-101.5980	11.1803	112.27954218
5	-2.1641	-102.9480	3.7674	112.12957155
	0.0050	102 2000	0.0044	110.00700000

From CST, a .txt file is generated with 4 columns: X, Y, Z and heat flux.

Example of temperature distribution in presence of a defect

Future studies: Including effect of blisters in the coating

- A bad adhesion of the film to the substrate can lead to thermal contact resistance of 110 cm²K/W (Bonded contact would be 0.3 cm²K/W)
- The interface Nb/Cu could be included in the simulations with the corresponding thermal resistance.

V Palmieri, and R Vaglio, Thermal contact resistance at the Nb/Cu interface as a limiting factor for sputtered thin film RF superconducting cavities, 2015, <u>Superconductor Science and Technology</u>, <u>Volume 29</u>, <u>Number 1</u>:

Wrap-up

- At CERN, RF characterization of thin films is carried out to find potential applications to SRF cavities.
- HiPIMS coatings applied to QPR samples have shown Q-slopes comparable to bulk Nb.
- When applying the same coating technique to 1.3 GHz cavities the RF performance is not as good as expected.
- ✓ Efforts should be put on:
 - Specific optimization of the coating technique for the cavity geometry.
 - Have good substrates (seamless cavities with thermal mapping system).
- Simulations are powerful tools that can help us to keep investigating the mechanisms behind the Q drop.

Thanks for your attention.

8th October 2020