

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

RESEARCH AND DEVELOPMENT ON SRF 6 GHZ CAVITIES

Vanessa Garcia Diaz, E. Chyhyrynets, F. Stivanello,

M. Zanierato, C. Pira

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

OUTLINE

- Why 6 GHz?
- State of art on 6 GHz cavities
- Seamless motivation
- Manufacturing process
- Surface treatments
- Coating process

EASITrain

2

- RF Characterization
- Magnetic flux trapped study

3

100 cm

2

400 MHz

S. Bauer et al., TEST RESULTS OF SUPERCONDUCTING CAVITIES PRODUCED AND PREPARED COMPLETELY IN INDUSTRY, Proceedings of EPAC 2004, Lucerne, Switzerland.

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

WHY 6 GHZ CAVITIES?

EASITrain

4

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

STATE OF ART NB ON CU

EASITrain

5

- High Q₀
- Thermal stability
- Cost reduction

- ALPI (LNL-INFN)
- ISOLDE (CERN)
- LHC (CERN)
- LEP2 (CERN)

Bulk Nb

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

6GHZ STATE OF ART

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

Student workshop on SC and applications 08/10/2020

6

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

EASITrain

7

See Sertore's and Pira's lecture (30/09)

SEAMLESS MOTIVATION

Imperfections

+

Roughness effect

Defects in the equator!

Lower RF performances

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

Student workshop on SC and applications 08/10/2020

8

SEAMLESS MOTIVATION

W. Venturini "Thin film research: CERN experience and possible future applications" TTC meeting Milano 2018

EASITrain

9

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

MANUFACTURING PROCESS @LNL

Fig. 1 Set-up for monocell cavity spinning using a simple hand tool applied as a pry bar.

V. Palmieri «Seamless 1,5GHz cavities obtained by spinning a circular blank of Copper or Niobium» Proceedings of SRF 1993, Virginia, USA.

Spinning of a Brass Disc

SURFACE PREPARATION

Cavity inner surface after grinding

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

Student workshop on SC and applications 08/10/2020

11

SURFACE PREPARATION

SURFACE PREPARATION

Vibrotumbling

Student workshop on SC and applications 08/10/2020

13

CHEMICAL PREPARATION

EASITrain

14

- Deoxidation
- Electropolishing
- Chemical polishing SUBU
- HPR

Vertical electropolishing set up

HPR set up

PVD PROCESS BY DC MAGNETRON SPUTTERING

High substrate temperature

J. A. Thornton and D. W. Hoffman, "Stress-related effects in thin films," Thin Solid Films, vol. 171, no. 1, pp. 5–31, 1989.

PVD PROCESS BY DC MAGNETRON SPUTTERING

Student workshop on SC and applications 08/10/2020

16

PVD PROCESS: THICK FILMS BY LONG PULSED DCMS

Total time of process ~ 5 hours

EASITrain

17

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

PVD PROCESS: THICK FILMS BY LONG PULSED DCMS

Grounded Potential IR lamp Cu cavity Nb cathode **EASITrain**

18

Baking = 600°C for 48 hours Temperature = 550 °C Base pressure < 1 x 10⁻⁹ mbar Magnetic Field = 830 Gauss Current = 1 A

Nb on Cu 6GHz cavity

Student workshop on SC and applications 08/10/2020

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

THICK FILM MORPHOLOGY BY EBSD

- Columnar growth
- Larger grains

Cav 21: 75 μm 500nm single layer thickness

Cav 16: 75 μm 500nm single layer thickness

RF CHARACTERIZATION

- Cavity inserted in cryostat in order to cool down
- After cool down, Q vs Eacc is measured 4,2K and 1,8K.

EASITrain

20

RF CHARACTERIZATION @1,8K 6GHZ

R&D on SRF 6 GHz cavities - Vanessa Garcia Diaz vagarcia@Inl.infn.it

Student workshop on SC and applications 08/10/2020

22

RF CHARACTERIZATION @1,8K 6GHZ DEPENDENCE OF SINGLE PULSE THICKNESS

RF CHARACTERIZATION @1,8K 6GHZ DEPENDENCE OF SINGLE PULSE THICKNESS

MAGNETIC FLUX TRAPPED STUDY

MAGNETIC FLUX TRAPPED STUDY

MAGNETIC FLUX TRAPPED STUDY

It is needed more statistic to confirm but this data indicates that **Nb bulk cavities** are more sensitive to magnetic field respect to **thin film** cavities, as expected

Effect higher in Bulk Nb Thick films effect?...

CONCLUSIONS

SITrain

29

- Thick film is a promising approach in order to push the limits of the Nb on Cu cavities technology.
- The effect of the surface preparation and single pulse thickness is fundamental for the cavity performance.
- Magnetic flux trapped in 6GHz cavities study will include a thick film RF characterization.

Thank you!

