

Student Workshop on Superconductivity and Applications

Development of Superconducting MgB₂ Wires

Paola Mauceri ASG Superconductors

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

OUTLINE

U Why MgB2?

- □ MgB2 application matrix
- □ ASG Superconductors company
- Columbus MgB2 Unit
- □ MgB2 production process
- □ MgB2 wires production process
- □ MgB2 wires quality control
- □ MgB2 wire configurations

Genoa,09/10/2020

2

WHY MGB2?

Genoa,09/10/2020

Paola Mauceri - Student Workshop on Superconductivity and Applications

3

WHY MGB2?

Large critical current density

Zeng et al. 2003

Superconducting MgB₂ thin film on silicon carbide substrate by HPCVD APL 82 2097-9

EASITrain ____

Genoa,09/10/2020

Compound	Mass density
Copper	8,96 g/cm ³
NbTi	6 g/cm ³
Nb3Sn	5,4 g/cm ³
YBCO	6,35 g/cm ³
BSCCO-2223	6,5 g/cm ³
MgB ₂	2,6 g/cm ³

Low density

Low material cost

PIT process for wire fabrication

MgB2-based systems could be cooled by modern cryocooling devices

MGB2 POWDER SEM IMAGE

Genoa,09/10/2020

5

EASIIrain

MGB₂ APPLICATION MATRIX

			CABLES	ROTATING MACHINES (MOTORS/ GENERATORS)	MAGNETS	FAULT CURRENT LIMITERS	ENERGY STORAGE DEVICES
	MEDICAL			\checkmark			
		ELECTRICITY/ GRID	\checkmark			\checkmark	\checkmark
	INDUSTRIAL	\checkmark		\checkmark		\checkmark	
		AIRCRAFT/ AEROSPACE	\checkmark	\checkmark			
		ENERGY GENERATION		\checkmark			
		NAVAL		\checkmark		\checkmark	

Genoa,09/10/2020

Genoa,09/10/2020

COLUMBUS MGB2 UNIT

Genoa,09/10/2020

MGB₂ PRODUCTION PROCESSES

MGB2 PRODUCTION PROCESSES

MGB2 PRODUCTION PROCESSES

MGB2 WIRES PRODUCTION PROCESS

MGB2 WIRES PRODUCTION PROCESS

Powders clean synthesis

Multistep rolling machine

High power straigth drawing machine

20 m long in-line furnace EASITrain

Genoa,09/10/2020

Multistep drawing machine

4 meter furnace for annealing HT

MGB2 WIRES QUALITY CONTROL (ISO 9001:2008)

STRUCTURE CHARACTERIZATION

Genoa,09/10/2020

14

CURRENT TRANSPORT MEASUREMENT

Tests parameters range Field: 0 – 1.8 T Temperature: 20 – 30 K Current: 0 – 1000 A

EASITrain Genoa,09/10/2020

RESIDUAL-RESISTANCE RATIO (RRR) AND TC TEST

Genoa,09/10/2020

MGB2 WIRE CONFIGURATIONS

ROUND WIRES

Diameter: d = 1.33mm 36 filaments Materials: Monel, Ni FF: 17%

Diameter: d = 1mm 37 filaments Materials: Monel, Ni FF: 14%

TAPES

Dimension: 2mm x 1mm 6 filaments Materials: Monel, Ni FF: 29%

Dimension: 3,67 mm x 0,65 mm 12 filaments Materials: Ni, Iron, Copper FF: 11%

EASITrain Genoa,09/10/2020

Development of superconducting links for the Large Hadron Collider machine

Amalia Ballarino

EASITrain

CERN, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland

Figure 3. Different generations of MgB₂ Columbus round wires. From left: (a) S1 octagonal wire with nickel matrix and central copper stabilizer surrounded by iron barrier; (b) S2 quasi-square wire with Monel matrix and nickel barrier around the filaments; (c) S3 round wire with Monel matrix and niobium barrier around the filaments; (d) and (e) SEM cross section imaging of wire S2 [8]: porosity and detachment in between the two MgB₂–Ni reaction layers.

Final configuration

Diameter: 0.93mm 37 filaments **Materials:** Monel, Ni, Nb FF: 11.5% Copper-Tin electrodeposition

Diameter of MgB₂ wire, Φ $0.8 \text{ mm} < \Phi < 1 \text{ mm}$ Diameter of superconducting filaments $< 60 \, \mu m$ Filaments twist pitch < 100 mmFilaments twist direction **Right-handed screw** >186 A Critical current at 25 K and 0.9 T Critical current at 25 K and 0.5 T > 320 A Critical current at 20 K and 0.5 T >480 A Bending radius (after final heat treatment)* < 100 mmTensile strain at room temperature* $\geq 0.28\%$ > 12% Copper fraction of the wire total cross section RRR of copper stabilizer >100 *n-value*** @ 25 K and 0.9 T > 20

Genoa,09/10/2020

MROpen

MGB2 TAPES FOR MRI

Wire layout in 2006:

- 14 filaments
- Unit piece length 1.6 Km

Updated wire layout:

- 12 filaments
- Improved fabrication process
- Unit piece length 4.0 Km
- Synthesis in controlled atmosphere

Paola Mauceri - Student Workshop on Superconductivity and Applications 19

Genoa,09/10/2020

CONCLUSION

- MgB2 as a SC material, allow to produce high quality superconducting wires for the LHC.
- Ex-situ PIT technique has been industrially implement in the new Columbus plant
- Several wire configurations have been developed in the last years
- MgB2 tapes are an optimal solution for the magnets development of MRI machines.
- ASG Superconductors is working in innovative projects that are exploring the opportunity to implement MgB₂ SC technology in many applications such as energy transmission, generation and storage

Genoa,09/10/2020