abreve pemerus ypabretens
торможетия протока в адре b perrtu buet ckon exfyrae
gra cuabe roprokenna $\frac{v^{2}}{1-v^{2}}$

$$
\left.F=-\varepsilon S \frac{V^{2}}{1-V^{2}}\right](\text { coomb. } \varphi-\mu(28) \text { gnп } \underset{\text { B. } .4 a}{ })
$$

$\varepsilon=\frac{M_{A}}{V_{A}}$ - потinvit oneprun B aqpe.

$$
\frac{d p}{d t}=F, p=\frac{m v}{\sqrt{1-v^{2}}} \quad \begin{aligned}
& \text { pen. yp. } \\
& \text { glu*emus }
\end{aligned}
$$

m - маса протона

$$
\begin{aligned}
\frac{d p}{d t}=\frac{m \dot{v}}{\left(1-v^{2}\right) \sqrt{1-v^{2}}} & \Rightarrow \\
\frac{m \dot{v}}{\left(1+^{2}\right) \sqrt{1-v^{2}}} & =-\varepsilon S \frac{v^{2}}{\left(1-v^{2}\right)}
\end{aligned}
$$

*

$$
\begin{aligned}
& \dot{v}\left.=-\left(\frac{\varepsilon S}{m}\right) v^{2} \sqrt{1-v^{2}}=-C v^{2} \sqrt{1-v^{2}}\right) \\
& C \equiv \frac{\varepsilon S}{m}
\end{aligned}
$$

 B gurnome B.E. en qta (30):

$$
\begin{equation*}
\dot{V} \equiv \frac{d V}{d t}=(-1)\left(\frac{\varepsilon S}{m} \cdot V^{2} \gamma\left(1+\gamma^{2} V^{2}\right)^{-1}\right. \tag{30}
\end{equation*}
$$

Bера не соокрадияа, $270: 2$

$$
\begin{gathered}
1+\gamma^{2} v^{2}=1+\left(\frac{1}{\sqrt{1-v^{2}}}\right)^{2} v^{2}=1+\frac{v^{2}}{1-v^{2}}=\frac{1}{1-v^{2}}=\gamma^{2} \\
\text { T.e. } 1+\gamma^{2} v^{2}=\gamma^{2} \text { Notory y ree }
\end{gathered}
$$

To:

$$
\begin{aligned}
\dot{v} & =-C v^{2} \gamma\left(\gamma^{2}\right)^{-1}=-C v^{2} \gamma^{-1}= \\
& =-C v^{2} / \gamma=-C v^{2} \sqrt{1-v^{2}}
\end{aligned}
$$

T.e. è уравнeние (30) cobrogaem \subset мoun ир. $*$
abnot pewenue ypabн \& 3
(*) $\quad \dot{V}=-C v^{2} \sqrt{1-V^{2}}$
a $\frac{d V}{v^{2} \sqrt{1-v^{2}}}=c d t$
(1) $-\int_{V_{0}}^{\bar{V}(t)} \frac{d V}{V^{2} \sqrt{1-V^{2}}}=c \int_{0}^{t} d t$

$$
V(t=0) \equiv V_{0}-
$$

- Haranbkar скорой тротола repeg bxojo a b agpe

Borwcaetue reonpegerietmo untespara:

$$
\begin{aligned}
& \int \frac{d v}{V^{2} \sqrt{1-v^{2}}}=\quad \begin{array}{l}
V \in[0,1) \\
= \\
= \\
\int \frac{-\sin \alpha d \alpha}{\cos ^{2} \alpha \sin \alpha}=\cos \alpha \\
d v=-\sin \alpha d \alpha \\
\sqrt{1-v^{2}}=\sin \alpha
\end{array} \\
&=-\int \frac{d \alpha}{\cos ^{2} \alpha}=-\operatorname{tg} \alpha+\operatorname{const}= \\
&= \frac{-\sin \alpha}{\cos \alpha}+\operatorname{const}=\frac{-\sqrt{1-v^{2}}}{v}+\operatorname{const}
\end{aligned}
$$

rpobeprea: $\left(\frac{-\sqrt{1-v^{2}}}{v}\right)_{v}=\frac{1}{v^{2} \sqrt{1-v^{2}}} 0 K$

Kenorbzyr 7To b 1 , nomzaen 4

$$
\left.\frac{\sqrt{1-v^{2}}}{v}\right|_{v_{0}} ^{v(t)}=c t
$$

(2) $\frac{\sqrt{1-V^{2}(t)}}{V(t)}-\frac{\sqrt{1-V_{0}^{2}}}{V_{0}}=c t$
$*$

Bugur, $2 T 0$, eču $p \gg m \Rightarrow$

$$
V_{0} \rightarrow 1
$$

"Otber repectiöm zabucrit on ? p-unnyst наretasougers rpoiona T.e. gar $p=10 \mathrm{GeN} \quad p=10 \mathrm{~T}_{7 B}=10.000 \mathrm{GeV}$ unern ogny प TyExe зabucn mov6:
(*** $V(t)=\frac{1}{\sqrt{1+C^{2} t^{2}}} \quad$ rр $\mu V_{0} \simeq 1$
令Ry+w, $c t=\frac{\sqrt{1-V^{2}(t)}}{V(t)}$

при тормохепия

$$
l(t) \equiv \int_{0}^{t} v(\tau) d \tau
$$

unnonbzyen © :

$$
\begin{aligned}
& l(t=0)=0 \\
& V(t=0)=V_{0}=1 \\
& \text { couzen, } 200
\end{aligned}
$$

$$
p \geqslant 0 m
$$

4

$$
l(t)=\frac{-1}{c} \int_{1}^{V(t)} v \frac{d v}{v^{2} \sqrt{1-v^{2}}}=-\frac{1}{c} \int_{0}^{v(t)} \frac{d v}{V \sqrt{1-v^{2}}}
$$

$$
\int \frac{d V}{v \sqrt{1-V^{2}}}=\frac{1}{2} \ln \frac{1-\sqrt{1-v^{2}}}{1+\sqrt{1+v^{2}}}+\cos t
$$

rpobeprea: $\left(\frac{1}{2} \ln \frac{1-\sqrt{1-v^{2}}}{1+\sqrt{1-V^{2}}}\right)_{V}^{p}=\frac{1}{v \sqrt{1-v^{2}}} O K$
roganberar 77o $b \Delta$ reaxozum:

$$
l(t)=+\frac{1}{2 C} \ln \frac{1+\sqrt{1-V_{t}^{2}}}{1-\sqrt{1-V^{2}(t)}}
$$

Oyerna kohctahto C

$$
\begin{aligned}
& C=\frac{\varepsilon S}{m}=\frac{M_{A} S}{V_{A} m}=\frac{A}{V_{A}} S=\frac{S}{V_{A} / A} \\
& \varepsilon=\frac{M_{A}}{V_{A}} ; \quad M_{A}=m A ;
\end{aligned}
$$

 ogut tyonort agja
S - nongerno cerenne πp orora

$$
\frac{V_{A}}{A}=\frac{\frac{4}{3} \pi R_{A}^{3}}{A}=4,2 \frac{(6,38 \mathrm{fm})^{3}}{196}=5,6 \mathrm{fm}^{3}
$$

Dppens rerozanuen, 2to gar trж. sigep

$$
\begin{aligned}
& R_{A}=c_{0} A^{1 / 3} \text { qe } c_{0} \simeq 1,1 \mathrm{fm} \\
& \frac{V_{A}}{A}=\frac{\frac{4}{3} \pi R_{A}^{3}}{A}=\frac{4}{3} \pi c_{0}^{3}=4,2 \cdot(1,1)^{3} f^{3}=5,6 f_{m}^{3} \\
& S=30 \mu \delta H=3 \mathrm{fm}^{2} \quad 7000 \text { onf } \\
& S=\pi r_{p}^{2} \quad r_{p}=\cdots \quad \text { Fiquiribt } \\
& \text { paguyiy bz }{ }^{2}=1 \mathrm{fm} \\
& \begin{aligned}
\Rightarrow C=\frac{S}{V_{A} / A}=\frac{3 \mathrm{fun}^{2}}{5,6 \mathrm{fm}^{3}}=0,545 \mathrm{~m}^{-1} & =0,54 \cdot 0,2 \mathrm{GeV} \\
& =0,11 \mathrm{GeV}
\end{aligned}
\end{aligned}
$$

Top moxerme «ротона go creppoin $V=0,5$ on cropozin $v=1$.

$$
\begin{array}{r}
t_{1}=\frac{1}{c} \frac{\sqrt{1-(1 / 2)^{2}}}{1 / 2}=\frac{\sqrt{3}}{C}=1,8 \cdot \sqrt{3} \mathrm{fm}=\frac{3,1 \mathrm{fm}}{=15,5 \mathrm{fev}^{-1}}= \\
l_{1}=\frac{1}{2 C} \ln \frac{1+\sqrt{1-1 / 4}}{1-\sqrt{1-1 / 4}}=\frac{1}{2 C} \ln (7+4 \sqrt{3})=\frac{1 / \ln 13,9}{C}= \\
=\frac{1,32}{c}=1,8 \cdot 1,32 \mathrm{fm}=2,4 \mathrm{fm}
\end{array}
$$

Cpabteru to C rpaquka C на puc. 11
b gunsoustrí pasert B.E.
(V) If rac $t_{1}=3,1 f \mathrm{fm}=15,5 \mathrm{Gev}^{-1}$

В её paiovie $t_{1}=96 \mathrm{Gev}^{-1}$ (乡д Ipaquer ka pue, 11)
(1) Te, завоииено b (Gpaz)

Рис. 11: Зависимость скорости projectile внутри ядра золота ($R=6.38 \mathrm{fm}, a=0.535 \mathrm{fm}, m_{0 c}=183.5 \mathrm{GeV}$) от времени при энергии столкновения в системе центра масс на нуклон-нуклонную пару $\sqrt{s_{N N}}=$ $10 \mathrm{GeV}\left(=>v_{0} \approx 0.999\right)$. Такой же график для энергии ниже 10 GeV можно получить из этого, сдвинув вертикальную ось влево (то есть сдвинув пересечение графика с осью ординат, то есть сдвинув v_{0} на меньшее значение).

ХОДРАЕОЫ।
Известно: $v_{0}, \rho, \sigma_{\text {inel }}^{\text {NN }}$

$$
\left.\begin{array}{c}
m \vec{a}=\vec{F}(\text { но в рел. форме! }) \Rightarrow v(t) \\
\text { Задаём скорость условной «остановки» } V_{0}
\end{array}\right\} \Rightarrow l
$$

По оценочному вычислению для золота ($\mathrm{R}=5.38 \mathrm{fm}, \mathrm{a}=538 \mathrm{fm}, \mathrm{A}=197$) при

$$
\begin{gathered}
V_{0}=0.7 \text { и } p_{\text {lab }}=18 \mathrm{GeV} / \mathrm{c} \quad l \approx 30 \mathrm{fm} \\
\qquad d=2(R+a) \approx 13.8 \mathrm{fm}(\mathrm{Au}) \\
F=-\frac{1}{1-v^{2}} \varepsilon v^{2} S \xrightarrow[\begin{array}{c}
\text { поощадь } \\
\text { оопереного } \\
\text { сечения протона }
\end{array}]{ } F_{\text {eff }}=-k_{\text {eff }} \frac{1}{1-v^{2}} \varepsilon v^{2} S
\end{gathered}
$$

