



# Logging data in relation with Post-Mortem and archiving

#### Ronny Billen AB-CO

16-17 January 2007



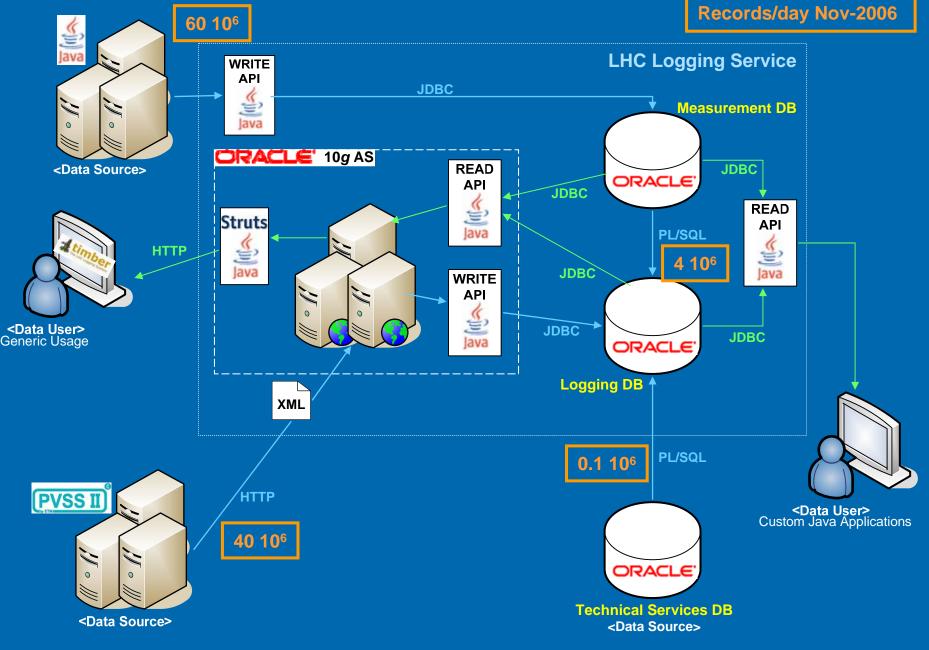




- Purpose of the LHC Logging Service
- Architecture overview
- Interaction with the Post-Mortem system
  - Combining and correlation of slow logging data and external transient data
  - Naming conventions and enforcement
  - Data lifetime policy
- Ideas and possibilities
  - Better use of the Naming database
  - Storing of PM summary information
- No conclusion

R. Billen



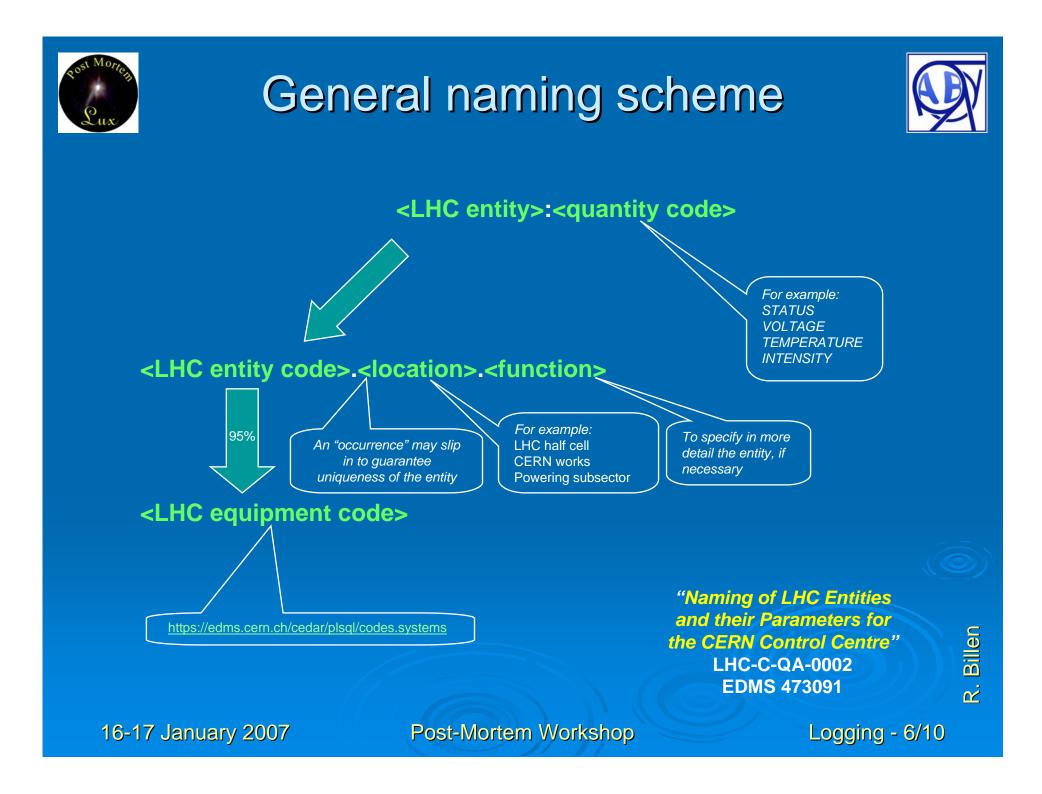





- Need to know what's going on in and around the LHC by *logging* heterogeneous time series data, in order to
  - manage information required to improve the performance of the machine and individual systems;
  - meet specific INB requirements to record beam history;
  - make available long term operational statistics for management;
  - avoid duplicate logging developments.
- Logging Project started in 2001
- First operational implementation used in autumn 2003
- Any client can use the service, including the injectors and the experiments
- Exponential increase in data volumes
- Expected to stabilize after 1<sup>st</sup> year of LHC operation ~5TB per year

R. Billen

#### Architecture




## Integration with other services



- For a complete PM analysis, slow logging data will need to be combined with transient data captured by the PM server
- Many data sources are the same for PM and Logging
  - Interlocks: PIC, WIC, BIC
  - Beam instrumentation: BCT, BL, BPM
  - Equipment: Power Converters, Collimators, RF, Beam Dump
  - Quench Protection System
  - Technical infrastructure: CV, electricity
  - Cryogenics: production, instrumentation
  - Vacuum: pressures
- Two prerequisites are to be fulfilled
- The same logic holds for Alarms, Setting, Trims,...

R. Billen





#### Signal names in practice



| Signal                       | Description                                                                                | System     |   |
|------------------------------|--------------------------------------------------------------------------------------------|------------|---|
| MQ.12L3:U_1_EXT              | Voltage across first half of MQ.12L3 external aperture                                     | QPS        | Ī |
| MB.A8R7:ST_MAGNET_OK         | Magnet status (SC or quenched) MB.A8R7                                                     | QPS<br>QPS |   |
| RCD.A56B2:I_DIDT             | Current slope in corrector circuit RCD.A56B2                                               |            |   |
| DQAMG.UA63.RQ4.L6:ST_FIP     | WorldFIP status from controller on circuit RQ4.L6                                          | QPS        | Ī |
| DQQDL.A8R7:ST_PWR_PERM       | Power permit from quench loop controller DQQDL.A8R7                                        | QPS        | ĺ |
| RCD.A56B2:ST_ABORT_PIC       | Quench status signal received by PIC for circuit RCD.A56B2                                 | PIC        |   |
| RB.A12.ODD:CMD_ABORT_PIC     | Fast abort request issued by PIC for odd side on circuit RB.A12                            | PIC        | İ |
| CIP.UA63.ML6:ST_SUPPLY_24V_1 | Status of the first 24V power supply in CIP.UA63.ML6                                       | PIC        |   |
| RPTE.UA87.RB.A81:I_REF       | Current reference of 13kA power converter on MB circuit                                    | PC         |   |
| RPTE.UA87.RB.A81:STATE_PLL   | Phase-locked loop state of 13 kA power converter on MB circuit                             | PC         |   |
| RPLB.UA83.RCOSX3.L8:I_MEAS 0 | Measured current of 120A power converter for inner triplet skew octupole corrector circuit | PC         |   |
| RPMBB.UA83.RQSX3.L8:STATE 0  | State of 600A power converter for inner triplet skew quadrupole corrector circuit          | PC         |   |
|                              |                                                                                            |            | C |


16-17 January 2007



### A different key per data store



| PM Serverfile systemfolder./RPLB.UA83.COSX3.L8/2006_01filepmdata-100Hz.sdds                                                    | Logging databasetable recordsvar-nameRPLB.UA83.COSX3.L8:I_MEASvar-id139162                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| LASER alarms database table records<br><i>FF</i> FFC_50<br><i>FM</i> RPLB.UA83.COSX3.L8<br><i>FC</i> 22 (voltage course fault) | Measurement databasetable recordsvar-nameRPLB.UA83.COSX3.L8:I_MEASvar-id2877                |  |  |
| FC 23 (voltage source fault)                                                                                                   | MTF EDMS doc file slot RPLB.UA83.COSX3.L8                                                   |  |  |
| Layout database table records<br>slot RPLB.UA83.COSX3.L8<br>slot-id 322206                                                     | file 24HrsHeatRun_lasse_<br><b>RPLB.UA83.COSX3.L8@SUB_51@I_MEAS</b><br>@14_26_00_000@0.sdds |  |  |





### Naming database



- The naming database has implemented the quality assurance definition rules
- Public portal : <u>http://cern.ch/service-acc-naming</u>
- The naming database can be used as:
  - Centrally maintained equipment code catalogue
  - Dictionary for entity parameters (signals)
  - Preparation of foreseen entities and their parameters
  - Propagation of definitions to other data stores
  - Generation of supervision systems configuration
- Usable for all accelerators
- Currently 150,000+ signals defined

R. Billen



### Data lifetime



- Data stored in the logging database will be kept for the lifetime of LHC
- Policy for keeping PM events (after analysis) has to be defined as well
- The more data there is, the more difficult it will be to analyze
  - 10<sup>7</sup> records/ hour from QPS sector (i.e. a lot of noise)
- Logging database could hold summary information per PM event
- Data definitions may vary over time
  - Renaming (for whatever reason)
  - Correcting historical errors (e.g. inversion of power converter cabling

☑ End-user must be confident when retrieving data for analysis

✤ ...Data Management of PM related data risks to get tricky over time