

Beam Quality Checks at Injection

Beam Quality Checks at Injection

V.Kain AB/OP

Input from: J. Wenninger, J. Wozniak, V. Baggiolini, E. McCrory

Contents:

- Introduction
- Which parameters need quality check?
- Requirements
- How...
- "Post mortem" of injection quality check
- Summary

Introduction – Injection Vetoes

2 types of vetoes...

- A) Interlocks: Injection Permits (& SPS extraction permits) for safe operation
 - must be safe
 - <u>hardware</u>/software
 - triggered rarely, only in case of irregular/abnormal operation
 - prevents injection
- B) Quality Checks for efficient operation and performance
 - must not continually block injection
 - <u>software</u>
 - triggered EVERY injection
 - can only latch NEXT injection (does NOT dump beam)

Focus on B) in this talk – however, borders between A) and B) somewhat blurred:

- functionality, consequence of veto (interlock/alarm)
- technology see below

What needs to be "injection quality" checked?

Beam parameters and configuration

- in the SPS at extraction
- in the transfer line
- in the LHC at injection
- in the LHC during first turns

Equipment parameters and performance measurements

extraction & injection systems, RF stuff

Different parameters must have different priorities/levels

- injection blocked by quality check only for rare cases
 - e.g. last injection ended up in wrong bucket
- 2 levels:

Level 1: LATCH – next injections inhibited (needs reset)

• Level 2: WARN – alarms, operator needs be informed to enhance performance

V. Kain AB/OP, Jan07

What needs to be "injection quality checked"?

Parameters to be monitored for injection quality check...

Parameter	equipment	what	tolerance	where	level		
bunch-by-bunch intensity							
variation	FBCT		< 10 %	SPS/LHC	2	warn 2	latch 1
injection oscillations			< 4 mm ??	LHC	2		
waveform	MKE / MKI			SPS/LHC	2		
local trajectory diff.	MSI			TL	1		
	TDI			LHC	1		
	TCLI			LHC	1		
<u>∆(BCTsps - BCTendti8)</u>					2		
Δ(BCTendti8 - BCTfirstturn)					2		
RF bucket number, pattern			no tolerance	LHC	1		
	synchotron light monitor/						
emittance	wire scanner		< 3.75 mm	SPS/LHC	2		
		B-field diff. between					
local arc excursion		arcs		LHC	2		
energy mismatch				SPS - LHC	2		
abort gap population	abort gap monitor		1e+7 p+/m		2		
ghost bunch intensity			< 5 %	SPS	2		
RF synchro phase				LHC	2		
RF synchro B-field				LHC	2		
bunch length				LHC			
max beam loss around							
ring				LHC	2		
beam loss	D2			LHC	2		
	MSI			LHC	2		ork in Pies
	mask infront of Q6			LHC	2		
transfer line losses				TL	2		

Requirements...

- In case of "quality check" veto
 - SEQUENCER should not request any LHC beam from the injector complex.
 - clean way:
 - not producing any LHC beam
 - required reaction time from last injection: ~ 1 s (tight!)
 - less clean way:
 - dumping the next LHC beam in the SPS
 - required reaction time < 20 s (relaxed)
- "Quality check" tool should
 - be easily configurable
 - · to start with a small sub-set of the beam parameters and extend if needed
 - interface to
 - Injection BIC
 - Sequencer
 - Alarms
 - can be reset by sequencer

- Need to perform the Injection Quality Check for EVERY injection
 - During regular operation: no interlock \rightarrow no post mortem data
- Using logging data is not fast enough
 - Hence the idea:

Injection Quality Check	within similar to	Software Interlock System (SIS)
Outra animitiana ta tha manana atam	f	

Subscription to the parameters of concern

Software Interlock System (SIS) - SPS

Injection Quality Check ↔ SIS

• Needs new features

"Post mortem" of Injection Quality Check

If quality check rejects last injection...

- SIS↔IQC GUI / Alarm screen signals which parameter was not within specification. SIS returns status only.
- To improve performance, analysis is needed
 - Analysis of transient recording
 - Shot-by-shot logging (as for CNGS, the SPS extractions and the transfer lines)
 - SDA: Sequenced Data Acquisition
 - LARP collaboration (E. McCrory, T. Bolshakov, D. Nicklaus, J. Cai @ Fermilab)
 - SDA = event-driven data acquisition and event-indexed DB
 - any form and size of data can be stored
 - data is acquired and stored for abstract stages (shot-case-set) building logical trees
 - e.g. all data related to the last injection could be stored under: fill 157 [injection, injection1]

Example: Extraction Transfer Post Operational Check (CNGS, SPS extraction, LHC transfer lines)

File Configuration		tory burlet - clb.bx1.1110x - 2000	10-21-00.30.21.0					
							-	
Post Mortem Analysis Reference Shots Management	A/B	DESCRIPTION	TIME (S)	TIME (US)	DELTA (MS)	DELTA (US)	POSITI	
		PC Burgers (B) goes from FBLSE to TBUE	10:50:03	1 11100	4270	4270199	POSITI	
Beam & Cycle : CNCS		BPL record found (0xe)	10:58:03	141252	4270	4270265	POSITI	
citos -		BPL record found (0xf)	10:58:03	141252	4270	4270265	POSITI	
		PC TT40 (A) goes from FALSE to TRUE	10:58:03	141253	4270	4270266	POSITI	
Start Date:	 	PC TT40 (B) goes from FALSE to TRUE	10:58:03	141253	4270	4270266	POSITI	
	pi pi	PC MSE (R) goes from TRUE to FALSE	10:58:03	144160	4273	4273173	POSITI	
(UTC time) DD-MM-YYYY HH:MM:SS 006-08-27	p	PC MSE (B) goes from TRUE to FALSE	10:58:03	144160	4273	4273173	POSITI	
End Date:	pin pin	BPL record found (0xb)	10:58:03	144161	4273	4273174	: POSI1	
	 🋤 🛤	BPL record found (0xa)	10:58:03	144161	4273	4273174	: POSI1	
(UTC time) DD-MM-YYYY HH:MM:SS D6-08-27 2	p 🛤	PC Bumpers (A) goes from TRUE to FALSE	10:58:03	144204	4273	4273217	: POSII	
Last 1	p 🛤	PC Bumpers (B) goes from TRUE to FALSE	10:58:03	144204	4273	4273217	: POSI1	
	p 🛤	PC TT40 (A) goes from TRUE to FALSE	10:58:03	144388	4273	4273401	: POSII	
	p 🛤	PC TT40 (B) goes from TRUE to FALSE	10:58:03	144392	4273	4273405	: POSII	
	p 🛤	BPL record found (0x8)	10:58:03	156946	4285	4285959	: POSII	
ExtraPoc Dataviewer Horizontal trajectory	p p p	BPL record found (0x0)	10:58:03	156947	4285	4285960	: POSII	
Extra oc balarienci Tiorizoniai (rajectory		FMCM MSE (A) goes from TRUE to FALSE	10:58:03	193631	4322	4322644	: POSI1	
🖁 Yiews 📰 🔜 🔟 🗄 🖽 🌄 🚝 🛄 🎟 🖬 More 🔤 📇 😂 .	pp	FMCM MSE (B) goes from TRUE to FALSE	10:58:03	193631	4322	4322644	: POSI1	
		Timing marker detected (861995)	10:58:04	870987	6000	6000000	: POSI1	
rray [16/01/07 18:15:51]		Timing marker detected (861995)	10:58:04	870987	0	0	: POSI1	
2-		SBF (A) goes from FALSE to TRUE	10:58:07	201998	2331	2331011	: POSI1	
2 —		SBF (B) goes from FALSE to TRUE	10:58:07	201998	2331	2331011	: POSI1	
		Timing marker detected (861996)	10:58:10	870988	6000	6000001	by Du	
		Timing marker detected (861996)	10:58:10	870988	0	0	5666	
-2-		SBF (R) goes from TRUE to FRLSE	10:58:13	302296	2431	2431308	: 40034	
		SBF (B) goes from TRUE to FALSE	10:58:13	302308	2431	2431320	-	
-4	232 r	ecord(s)					•	
E Legend						_		
a -0 Array							20	
Reference								
-10						b aaaa		
						DCESS		
-12-								
14-								
-14	1							
-16								
5 10 15 20								
Monitor								

E. McCrory

CERN

Remarks

- SIS \leftrightarrow IQC: short time window...1 s
 - data collection is the bottleneck
 - e.g. LHC BLM data is published with 1 Hz
- Triggering of acquisition e.g. LHC BPMs, etc. according to injected bunch pattern
 - Sequencer needs to configure BPM system (and other instrumentation) for next injection, set filters according to injected bunch pattern
 - IQC also needs to know requested bucket number etc. for comparison
 - SIS has timing card
 - Telegram with injection bucket from sequencer via timing system required
- Can only be fully tested with beam. Needs beam commissioning time.

IQC – Plans for 2007

- Set up injection quality check within SIS for LHC start-up
- Restrict first version to minimum sub-set of monitored parameters
 - Bucket number (needs telegram from sequencer)
 - Trajectory (\leftrightarrow energy)
 - easy test: e.g. every pickup < 4 mm
 - Losses
- Plans for SDA:
 - now: software architecture for LHC SDA at Fermilab
 - May 2007: test SDA at SPS
 - autumn 2007: SDA implementation for LHC

Summary

- Injection beam quality check is required to enhance the performance.
- The Software Interlocking System seems to be a good candidate to do this job.
 - We will start with this...
- Shot-by-shot logging data and SDA is required for a "post mortem" of the Injection Quality Check.
- We will have a first version of the injection beam quality check for the LHC start-up in 2007.