



#### Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Peter Peier, Felix Müller, Bernd Steffen, Volker Schlott Electro Optical Sampling of Coherent Synchrotron Radiation for ps Electron Bunches with pC Charge



- Introduction & Motivation
- SLS FEMTO Bunch Slicing
- Principle of Electro Optical Detection and Bunch Length Measurement
- Results and Simulation
- EO Monitors for SwissFEL Injector
- Conclusion

PAUL SCHERRER INSTITUT

# Motivation

| Goal:         | Measurement of particle distribution in time domain                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Requirements: | Non-destructive bunch length measurement                                                                                               |
|               | Measurement of small charge modulations of the electron bunch (few pC)                                                                 |
|               | High temporal resolution (< 1ps)                                                                                                       |
|               | Jitter insensitive $\rightarrow$ single shot                                                                                           |
| Method:       | EO offers the possibility to measure electron bunches and low charge modulation single shot (turn by turn) with sub ps time resolution |

|                 | FEMTO @ SLS   | Injector      | Injector BC         | SwissFEL            |
|-----------------|---------------|---------------|---------------------|---------------------|
| Energy [MeV]    | 2400          | 250           | 250                 | 2100                |
| Charge [pC]     | 1-10          | 10-200        | 10-200              | 10-200              |
| timescale [ps]  | 0.2-10        | 10            | 0.2                 | 0.01-0.03           |
| (sub-)structure | modulation    | bunch         | bunch               | bunch               |
| Method          | CSR           | Coulomb field | Coulomb field / CSR | Coulomb field / CSR |
| Crystal         | GaP/ZnTe/DAST | GaP           | GaP                 | GaP/DAST            |



## Swiss Light Source - SLS

2.4 GeV

5 - 6.8 nm rad

3 - 10 pm rad

400 mA (top-up)

288 m

0.09 %

~ 8 h



#### Key data:

- Beam energy
- Circumference
- Emittances

horizontal vertical

- Energy spread
- Beam current
- Life time
- Nominal pulse length 35 ps (rms)

Bicing Experiment

#### SLS FEMTO slicing project: Tunable sub-ps X-ray source



## FEMTO Bunch Slicing – Layout and Principle





#### **Electron Beam**

- Bunch length of sliced beam: s =100 fs, core beam: s = 35 ps
- Slicing leads to longitudinal density modulation of core bunch, which will be lengthened through passage of storage ring proportional to the linear Momentum Compaction Factor.
- Slicing efficiency per bunch: ~10<sup>-4</sup> Bunch Charge: 5 nC →modulated bunch: few pC

#### Synchrotron Radiation

 Coherent (~ N<sup>2</sup>) enhancement of SR up to a factor of 100 compared to incoherent SR for wavelengths from ~ 0.1 mm up to 1 mm







- Introduction & Motivation
- SLS FEMTO Bunch Slicing
- Principle of Electro Optical Detection and Bunch Length Measurement
- Results and Simulation
- EO Monitors for SwissFEL Injector
- Conclusion



# $CSR \leftarrow \rightarrow$ Coulomb Field



#### **Coherent Synchrotron Radiation**





### Yb-Fiber Laser – Layout and Performance



PAUL SCHERRER INSTITUT

## The Electro Optic Effect



$$P = \varepsilon_0 \left( \chi_e^{(0)} E + \chi_e^{(1)} E^2 + \chi_e^{(2)} E^3 + ... \right)$$
  
Pockels effect Kerr effect

•  $\vec{E}_{THz}$  passes the EO-crystal in the (1,1,0)-plane

• The two components of a linearly polarized probe laser pulse  $\vec{E}_{\text{laser}}$  will see different refractive indices  $n_1$  and  $n_2$  in the crystal leading to a phase retardation and a subsequent polarization change (from linear to elliptical) of the laser pulse

$$\Gamma_{\max} = \frac{\omega d}{c} (n_1 - n_2) = \frac{\omega d}{c} E_{THz} n_0^3 r_{41}$$









Response of GaP of a certain thickness





## **Principle of EO Detection**





### Principle of EO Detection - Sampling







# 

## Principle of EO Detection – Spectral Decoding





- Introduction & Motivation
- SLS FEMTO Bunch Slicing
- Principle of Electro Optical Detection and Bunch Length Measurement
- Results and Simulation
- EO Monitors for SwissFEL Injector
- Conclusion

#### **SLS** Measurements





Delaystage with 100fs stepwidth
Averaged over 100 pulses
FEMTO laser to EO laser Jitter ~ 50 fs rms

Additional arrival time Jitter

 $\rightarrow$  pulse broadening



Good phasematching and low frequencies allow thick crystals
ZnTe has a higher r<sub>41</sub> but worse optical quality

1mm thick ZnTe crystal



PAUL SCHERRER INSTITUT



#### Setup and Results - Spectral Decoding; Single Shot







Arrival time can be subtracted

→Averaged signal doesn't suffer from Jitter.
 →Absolute THz field strength can be determined.

Comparison between spectral decoding and sampling measurements







Due to energy modulation, electrons have about 10 times higher energy spread →broadening of electron distribution ~ 4.8 ps/turn →broadening of the dip ~ 520 fs/turn



- Energy modulated electron distribution is suppressed due to long wavelength cut-off at the IR Beamline
- $\rightarrow$ only the "hole" is visible

Averaged Spectral Decoding measurement of turn 0 is in good agreement with theory.



Preliminary Results:

- Sampling measurement system is sensitive enough to detect sliced particle distribution up to turn 3.
- Spectral decoding can be used up to turn 2
- But: Tracking predicts much broader pulses → further analysis is required.





- Introduction & Motivation
- SLS FEMTO Bunch Slicing
- Principle of Electro Optical Detection and Bunch Length Measurement
- Results and Simulation
- EO Monitors for SwissFEL Injector
- Conclusion



#### •SwissFEL - start of operation 2016



#### •250MeV injector test facility – start of operation 2010/2011





# EO Monitors for SwissFEL Injector - Laser





## EO Monitors for SwissFEL Injector - Monitor









# 

#### Activities at PSI

•FEMTO: Slicing experiment at Swiss Light Source

- longitudinal density modulation of core bunch
- Coherent Synchrotron Radiation in the THz region
- •Electro optical method to measure longitudinal bunch structure
  - Sampling technique
  - Spectral decoding
- •Experimental results compared to simulation
  - Signal form  $\rightarrow$  temporal structure
  - Jitter  $\rightarrow$  arrival time

•Presentation of a packaged laser and a compact EO monitor for SwissFEL 250MeV injector

#### Thanks

- Simulations: Andreas Streun (PSI)
- Infrared Beamline crew: Philippe Lerch, Hans Sigg and Luca Quaroni (PSI)
- FEMTO Slicing team: Gerhard Ingold, Steven Johnson and Paul Beaud (PSI)