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Motivation

Goal: Measurement of particle distribution in time domain
Requirements: Non-destructive bunch length measurementRequirements: Non destructive bunch length measurement

Measurement of small charge modulations of the electron bunch (few pC)
High temporal resolution (< 1ps)
Jitter insensitive  single shotJitter insensitive  single shot

Method: EO offers the possibility to measure electron bunches and low charge 
modulation single shot (turn by turn) with sub ps time resolution

FEMTO @ SLS Injector Injector BC SwissFEL

Energy [MeV] 2400 250 250 2100

Charge [pC] 1-10 10-200 10-200 10-200
timescale [ps] 0.2-10 10 0.2 0.01-0.03

(sub-)structure modulation bunch bunch bunch

Method CSR Coulomb field Coulomb field / CSR Coulomb field / CSR

Crystal GaP/ZnTe/DAST GaP GaP GaP/DAST



Swiss Light Source - SLS

EO measurementEO measurement

Key data:
B  2 4 G V

Storage ring

Slicing Experiment

• Beam energy 2.4 GeV
• Circumference 288 m
• Emittances

SLS FEMTO slicing project:SLS FEMTO slicing project:
Tunable subTunable sub--ps Xps X--ray sourceray source

Emittances
horizontal 5 - 6.8 nm rad
vertical 3 - 10 pm rad

• Energy spread 0 09 % Tunable subTunable sub--ps Xps X--ray sourceray source• Energy spread 0.09 %
• Beam current 400 mA (top-up)
• Life time ~ 8 h
• Nominal pulse length  35 ps (rms)• Nominal pulse length  35 ps (rms)



FEMTO Bunch Slicing – Layout and Principle

Electron/Laser 
Interaction
Modulator (Wiggler)

Sub-ps X-Rays
Radiator (Undulator)
4 2 14 keVModulator (Wiggler)

→periodic transverse 
component of 
momentum

4.2-14 keV
4*105 ph/s/0.1%BW

Ti:Sa LaserTi:Sa Laser
Two stage amplification
5 mJ/pulse
2 kHz rep. rate
30 f  ( )30 fs (rms)

(courtesy of G. Ingold - PSI)

Chicane
Laser – electron separation
Angular dispersion
Electron energy modulation 
 longitudinal electron density modulation longitudinal electron density modulation



FEMTO Slicing – Coherent Synchrotron Radiation (CSR)

Electron Beam
• Coherent (~ N2) enhancement of SR up to a factor of 

Synchrotron Radiation
• Bunch length of sliced beam:  s =100 fs, 

core beam:     s = 35 ps 100 compared to incoherent SR for wavelengths 
from ~ 0.1 mm up to 1 mm

core beam:     s = 35 ps
• Slicing leads to longitudinal density modulation

of core bunch, which will be lengthened through 
passage of storage ring proportional to the linear

• Slicing efficiency per bunch: ~10-4

Bunch Charge: 5 nC

passage of storage ring proportional to the linear
Momentum Compaction Factor.
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CSR  Coulomb Field

Coulomb field

Coherent Synchrotron Radiation



Yb-Fiber Laser – Layout and Performance

20-30nm

Oscillator:
P = 50 – 100 mW

Amplifier:
P = 10 – 20 mW ~100nm

EPulse = 1 – 2 nJ
t = 50 fs
frep = 50 MHz

EPulse = 10 – 20 nJ
t = 35 fs
frep = 1 MHz



The Electro Optic Effect
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only transmits 
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EO Crystal – Gallium Phosphide (GaP)

Dispersion plot: phase velocity vs  frequency Response of GaP of a certain thickness
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Principle of EO Detection

Oscillator

synchronization delay VM
MHz 50rep f

AOMAOM

Amplifier
kHz 2rep f

Synchronized Ytterbium fiber laser is 
modulated by Coherent Synchrotron modulated by Coherent Synchrotron 
Radiation (ETHz) in EO crystal (GaP, ZnTe) 



Principle of EO Detection - Sampling

Sampling



Principle of EO Detection – Spectral Decoding

Sampling: CSRLaser

tt
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Spectral decoding:
t
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CSR
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SLS Measurements

EO measurement

Storage ring

Slicing Experiment



Setup and Results - Sampling Measurements @ IR Beamline

•Delaystage with 100fs stepwidth
A d  100 l •Good phasematching and low •Averaged over 100 pulses

•FEMTO laser to EO laser Jitter ~ 50 fs rms

Good phasematching and low 
frequencies allow thick crystals
•ZnTe has a higher r41 but worse 
optical quality

•Additional arrival time Jitter
 pulse broadening

optical quality

5mm thick GaP crystal 1mm thick ZnTe crystal

1 2 ps 1.2 ps1.2 ps
σ = 510 fs σ = 510 fs

1.2 ps



A i l Ti  Jitt   630 f  ( )
Setup and Results - Spectral Decoding; Single Shot

P l  L th  (365 ± 50) f  Arrival Time, Jitter ~ 630 fs (rms)Pulse Length: (365 ± 50) fs rms

Spectral Decoding (5mm GaP crystal)
•Thin line: Measurement
•Thick line: GaussfitThick line: Gaussfit

→ Fit parameters give
• Arrival time
• Pulse lengthPulse length

Spectrum of Autocorrelation

main jitter contribution at 5Hz

Estimation 
of EO 

Spectrum of Autocorrelation

main jitter contribution at 5Hz
arrival time 
resolution:
= 330 fs = 330 fs 
(limited by 
signal 
strength)



Setup and Results - Spectral Decoding; Average

Comparison between spectral decoding 
and sampling measurementsArrival time can be

subtracted

→Averaged signal doesn’t 
suffer from Jitter.
Ab l t  TH  fi ld →Absolute THz field 
strength can be 
determined.

SD Laser modulation: 7 %
→ Γ ~ 0.55°
→ ETH  ~ 2*104 V/m→ ETHz  2 10 V/m



Setup and Results - Tracking Results

Distributions in time domain Beamline acts as a highpass Filter

Spectral distributionsSpectral distributions

• Energy modulated electron 
• Due to energy 
modulation, electrons 
have about 10 times 

Measurement done by Hans Sigg

distribution is suppressed due 
to long wavelength cut-off at 
the IR Beamline

have about 10 times 
higher energy spread
→broadening of
electron distribution →only the „hole“ is visibleelectron distribution 
~ 4.8 ps/turn
→broadening of
th  di  the dip 
~ 520 fs/turnParticle tracking done by Andreas Streun



Setup and Results - Tracking results

Preliminary Results:
• Sampling measurement system is sensitive 

Averaged Spectral Decoding 
measurement of turn 0 is in good Sampling measurement system is sensitive 

enough to detect sliced particle distribution up 
to turn 3.

• Spectral decoding can be used up to turn 2

g
agreement with theory.

• Spectral decoding can be used up to turn 2
• But: Tracking predicts much broader pulses
→further analysis is required.

Comparison of pulse length
Simulation: 286 fs
Measurement: (365 ± 50) fs
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SwissFEL

•SwissFEL – start of operation 2016

•250MeV injector test facility – start of operation 2010/2011
SwissFEL Project

electrons

THz

13.07.2010PSI, Seite 23

Bernd Steffen



EO Monitors for SwissFEL Injector - Laser



EO Monitors for SwissFEL Injector - Monitor





Conclusion & Acknowledgments

•Activities at PSI
•FEMTO: Slicing experiment at Swiss Light Source

– longitudinal density modulation of core bunch
– Coherent Synchrotron Radiation in the THz region

•Electro optical method to measure longitudinal bunch structurep g
– Sampling technique
– Spectral decoding

•Experimental results compared to simulation•Experimental results compared to simulation
– Signal form  temporal structure
– Jitter  arrival time

f O f S•Presentation of a packaged laser and a compact EO monitor for SwissFEL 250MeV injector
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