

Electro-Optic Longitudinal Profile Optic Profile Diagnostics

Current Status & Future Directions

W A Gill i W.A. Gillespie, Carnegie Laboratory of Physics, *University of Dundee*

S.P. Jamison, **T. Ng,** *Accelerator Science and Technology Centre, STFC Daresbury Laboratory*

Collaborators:

A.M. MacLeod *(University of Abertay Dundee)*

G. Berden, B. Redlich, A.F.G. van der Meer *(FELIX Rijnhuizen)*

B. Steffen, E.-A. Knabbe, H. Schlarb, B. Schmidt, P. Schmüser *(DESY FLASH)*

Electro-Optic Techniques...

4. Spectral Upconversion

Concept of electro-optic profile diagnostic

all-optical intra-beamline pickup of relativistic bunch Coulomb field

Encoding Decoding

- same for all techniques
- • limiting factor for high time resolution techniques

- choices for complexity
- •limiting factor for spectral decoding

IVERSITY

DUNDER

Physics of EO encoding ... standard description

NIVERSITE DUNDEE

Refractive index modified by external (quasi)-DC electric field

quasi-DC description ok if $|\tau_{\text{laser}}| << 1$ time scale of E_{DC} variations (basis for Pockels cells, sampling electro-optic THz detection, ...)

N.B. Time-varying refractive index is a restricted approximation to the physics (albeit a very useful and applicable formalism for majority of situations)

Physics of EO encoding...

New concepts & understanding of very high time resolution techniques come from generality of frequency mixing physics description

Jamison et al. Opt. Lett **31** 1753 (2006)

Frequency domain description of EO detection...

Electro-optic encoding is a consequence of sum- and difference-frequency mixing

Previous refractive index formalism comes out as subset of solutions (restriction on laser parameters)

1. Spectral Decoding

Attractive simplicity for low time resolution measurements e.g. injector diagnostics

Rely on ^t‐ relationship of input pulse for interpreting output optical spectrum Resolution limits come from the fact that the EO‐generated optical field doesn't have the same t‐ relationship

temporal resolution limits…

 $\tau_{\rm lim} = \sqrt{12\pi\beta}$ In general spectral decoding limited by chirp For specific laser profiles, can relate to FWHM durations…

 $\tau_{\rm lim} = 2.61 \sqrt{T_0 T_c}$; for a Gaussian pulse

Unlikely to get better than 1.0 ps (FWHM) with spectral decoding

Concepts based on Tc <20 fs pulses must dd t bl f ti l t address extra problems of optical GVD (not clear these can be overcome without significant complication)

EO encoding (almost) same as before - Same t-x relationship

In principle: expect same/similar capabilities as TD

Caveat: non-collinear geometry alters EO *tensor* response

less widely demonstrated:

SLAC and DESY expts had significant additional complications of long transport in fibre...

SPPS (SLAC) measurements () ()

FLASH (DESY) measurements

from A. Azima et. al EPAC06

Spatial Encoding...

Questions / concerns on practical implementation

(from someone who hasn't performed a spatial encoding diagnostic expt!)

special properties of Collinear <110> geometry

cience & Technology Facilities Council

3. Temporal Decoding

Rely on EO crystal producing a optical temporal replica of Coulomb field

Measure optical replica with *t-x* mapping in 2nd Harmonic Generation

Temporal profile of probe pulse \Rightarrow Spatial image of 2nd harmonic Integrated SH intensity

limited by

- •gate pulse duration (although FROG etc could improve)
- •EO encoding efficiency, phase matching

Practical limitations: complexity of laser systems transporting short pulse laser (gate pulse only)

temporal decoding in practice..

currently the highest time-resolution non-destructive diagnostic demonstrated

Benchmarking of EO diagnostics

comparison with transverse deflecting *(LOLA)* cavity

Benchmarking of Electro-Optic Monitors for Femtosecond Electron Bunches

G. Berden,¹ W. A. Gillespie,² S. P. Jamison,³ E.-A. Knabbe,⁴ A. M. MacLeod,⁵ A. F. G. van der Meer,¹ P. J. Phillips,² H. Schlarb,⁴ B. Schmidt,⁴ P. Schmüser,⁴ and B. Steffen⁴

plus Phys. Rev. ST, 12 032802 2009

Allan Gillespie, 2nd DITANET Topical Workshop, CI, 12-13 July 2010

IVERSITY

DUNDEE

Temporal decoding extras: EO confirmation of CDR feedback systems feedback

Science & Technology
Facilities Council

So are all the problems solved...?

Low time resolution (p) >1 ps structure)

- *spectral decoding offers explicit temporal characterisation*
- *relatively robust laser systems available*
- *diagnostic rep rate only limited by optical cameras*

High time resolution (>60 fs rms structure)

- *proven capability*
- *significant issues with laser complexity / robustness*

Very high time resolution (<60 fs rms structure)

• *limited by EO material properties (& laser)*

Encoding Time Resolution... material frequency response, $\mathsf{R}(\omega)$

- velocity mismatch of Coulomb field and probe laser
- •• frequency mixing efficiency, $\ \chi^{(2)}(\omega)$

Time resolution from frequency response

- •**Encoding "time resolution" not a RMS measure...**
- •**Better described as "temporal limitation"**
- *structure on longer time scale recorded faithfully*
- *short time scale structure not observed, PLUS ringing artefacts*

Allan Gillespie, 2nd DITANET Topical Workshop, CI, 12-13 July 2010

INIVERSITY O

DUNDEE

Can we achieve even better resolution ...?

Encoding

Detector Material:

- GaP
- –Move to new material? (phase matching, $\chi^{(2)}$ considerations)
- Could use GaSe, DAST, MBANP or poled organic polymers?
- –use multiple crystals, **and reconstruction process**

Decoding

Gate pulse width \sim 50 fs

Introduce shorter pulse

Use (linear) spectral interferometry

Use FROG Measurement (initially attempted at FELIX, 2004)

or Alternative Techniques: Spectral Upconversion Upconversion

If drop requirement for explicit time information at high frequencies, other options also become available ...

alternative ways forward...

Current limitations are from material properties

Phonon -resonances at 3 resonances -15 THz (material dependent) 15

All materials will have some phonon resonance effects

Can we use a set of crystals to cover larger range?

requires (uncertain) reconstruction to find temporal profile temporal profile (relative phase shifts, phase matching, efficiency between crystals)

→ complication of system would multiply

If reconstruction needed anyway, reconsider spectral techniques ... BUT traditional spectral techniques have difficulties :

> *lon g -wavelen gth / DC -com p p onent transport extreme ("100%") spectral bandwidths for detection*

A solution : Electro-optic spectral upconversion

4. Spectral upconversion upconversion diagnostic

Physics of EO encoding...

OR

shifting Coulomb spectrum to optical region OR

-- creating an optical "replica" of Coulomb field

S.P. Jamison/ CLIC workshop, CERN, October 2009

Spectral upconversion upconversion diagnostic

Aim to measure the bunch Fourier spectrum...

- ... accepting loss of phase information & explicit temporal information
- ... gaining potential for determining information on even shorter structure
- ... gaining measurement simplicity

use long pulse, narrow band, probe laser

$$
\tilde{E}_{\text{out}}^{\text{opt}}(\omega) = \tilde{E}_{\text{in}}^{\text{opt}}(\omega) + i\omega a \tilde{E}_{\text{in}}^{\text{opt}}(\omega) * \left[\tilde{E}^{\text{Coul}}(\omega) \tilde{R}(\omega) \right]
$$

me physics standard" EO

 $\tilde{E}(\omega_0 + \Omega) = \tilde{E}(\omega_0) + i\omega a \tilde{E}(\omega_0) [\tilde{E}^{\text{Coul}}(\Omega) \tilde{R}(\Omega)]$ $(\Omega \text{ can be } < 0)$

different observational outcome

- *laser complexity reduced, reliability increased*
- *l t t b t i i l (fib) laser transport becomes trivial (fibre)*
- *problematic artefacts of spectral decoding become solution*

NOTE: the long probe is converted to optical replica

Spectral upconversion diagnostic

Results from experiments at FELIX (Feb 2009) in FEL'09; and *Appl. Phys. Lett. 96, 231114 (2010)*

Theory / Expt. comparison

Coulomb field of bunch

What's different...?

Spectral decoding & Temporal decoding

laser bandwidthbunch spectral extent >>

issues of

- laser transport
- laser complexity/expense/reliability
- material effects (e.g. group velocity dispersion)

Important: technique can measure **vice of the COV** bower, 'simple' lasers OK **portant:** technique can measure non-propagating long-wavelength components not accessible to radiative techni ques (CSR/CTR/S-P)

Spectral upconversion

-
- fibre transport now an option
- simple linear spectral detection ques (CSR/CTR/S-P) and the *without artefacts of spectral decoding*

ALICE spectral decoding, 40pC, first results from last week....

I S nummary ...

- **Proven capability for explicit temporal characterisation up to ~100 fs rms electron bunch structure**
- **Hig qp h time resolution techniques have problems with reliability & necessary infrastructure...**
- **...** *but* **there exist avenues available for improving time resolution & robustness (depending on the beam diagnostics requirements)**
- **For high time resolution, alternative materials & spectral upconversion are both under investigation**

Selected References (Daresbury-Dundee Group)

Sub-picosecond electro-optic measurement of relativistic electron pulses

X. Yan, A.M. MacLeod, W.A. Gillespie, G.M.H. Knippels, D. Oepts, A.F.G. van der Meer. *Physical Review Letters 85 (2000) 3404-7*

Single-shot electron bunch length measurements shot bunch

I. Wilke, A.M. MacLeod, W.A. Gillespie, G. Berden, G.M.H. Knippels, A.F.G. van der Meer *Phys. Rev. Lett. 88 No 12 (2002) 124801/1-4*

Real-time, non-destructive, single-shot electron bunch-length measurements

G. Berden, S.P. Jamison, A.M .MacLeod, W.A. Gillespie, B. Redlich and A.F.G. van der Meer *Physical Review Letters 93 (2004) 114802*

Temp y orall y resolved electro-o ptic effect

S.P.Jamison, A.M. Macleod, G. Berden, D.A. Jaroszynski and W.A. Gillespie *Optics Letters 31, 11 (2006) 1753-55*

Benchmarking of electro-optic monitors for femtosecond electron bunches

G. Berden, W.A.Gillespie, S.P. Jamison, B. Steffen, V. Arsov, A.M. MacLeod, A.F.G. van der Meer, P.J. Phillips, H. Schlarb, B. Schmitt, and P. Schmüser *Phys. Rev. Lett. 99 043901 (2007)*

Electro-optic time profile monitors for femtosecond electron bunches at the soft X-ray free-electron laser FLASH

B. Steffen, V. Arsov, G. Berden, W.A. Gillespie, S.P. Jamison, A.M. MacLeod, A.F.G. van der Meer, P.J. Phillips, H. Schlarb, B. Schmitt, and P. Schmüser

Physical Review Special Topics – Accelerators and Beams 12 032802 (2009)

Upconversion of a relativistic Coulomb field terahertz pulse to the near infrared

S. P. Jamison, G. Berden, P. J. Phillips, W. A. Gillespie, and A. M. MacLeod *Appl. Phys. Lett. 96, 231114 (2010)*

