

CDR for bunch length monitoring applications

Maximilian Micheler, Grahame Blair, Gary Boorman, Maximiliane Goossens, Pavel Karataev, Konstantin Lekomtsev John Adams Institute at Royal Holloway

> Roberto Corsini, Thibaut Lefevre CERN

> > July 12, 2010

- Diffraction radiation appears when a charged particle moves in the vicinity of a medium
- Impact parameter, h, is the shortest distance between the target and the particle trajectory
- The criterion for diffraction radiation to be emitted is

Royal Holloway University of London

 $h \leq \gamma \lambda$

where γ is the Lorentz factor and λ is the observation wavelength

•For our setup at CTF3, $h \approx 15 \text{ mm} \le \gamma \lambda = 1175$ for $\gamma = 235$ and $\lambda = 5 \text{mm}$.

Coherent radiation:

Royal Holloway University of London

- $S(\boldsymbol{\omega})$ is the signal, known from the experiment
 - this can be obtained by using an interferometer
- $S_e(\omega)$ is the single electron radiation, which should be predictable form theory
- N_e is the number of electrons, known from the experiment
 - can be measured using the charge reading of a beam position monitor
- • $F(\boldsymbol{\omega})$ is the longitudinal bunch form factor, which is the measurement purpose.
 - the bunch form factor is just the Fourier transform of the spatial charge distribution in space

• the longitudinal bunch profile can therefore be reconstructed

Royal Holloway University of London

	Module Name	Description
Frequency Domain	Omega3P	Eigen-solver for resonant modes
	S3P	S-Parameters
Time Domain	T3P	Excitation of fields by relativistic bunch
	Pic3P	PIC code for space- charge dominated devices
	Track3P	Particle tracking for multipacting & dark current
Multi-physics	TEM3P	EM, thermal, mechanical 5

Simulations: Model

Simulations: Preliminary

July 12, 2010

Spectra from theoretical model and electromagnetic simulations:

• Suppression of the power:

- towards lower frequencies due to finite target dimensions
- towards higher frequencies due to the form factor cut-off
- Discrepancies of the peak position for the two cases and slightly different shape
- Further simulation studies are ongoing and very promising

CDR setup

10

Vacuum manipulator for target rotation and translation

CRM.MTV0210 for target reference position

CDR target within six-way cross

CR.SVBPM0195 (not shown in picture) for beam position and charge readings

SBD detector

Polarisrer

Beam splitter

July 12, 2010

Off-centre flange

Installation of an off-centre adapter flange (15mm):

- Originally had a central viewport installed
- Small vacuum intervention in October 2009 to install the offcentre flange and diamond vacuum window
- Flange was installed because unwanted backgrounds were detected from the machine
- Able to cut out this background with such a flange
- Flat transmission spectrum for diamond viewport

Installation of off-centre flange was a success:

• Comparison of the signals from a translation scan before and after the installation

ERN

Longitudinal measurements

Longitudinal measurements:

Royal Holloway University of London

• Comparison of BPR (30 GHz), CSR with SBD detectors, and Streak camera

Longitudinal measurements:

Royal Holloway University of London

• Comparison of BPR (30 GHz) and CDR with SBD detectors

Spectral measurements

16

Interferometric measurements:

Royal Holloway University of London

- A better understanding of the system has been achieved
- Interferograms look very promising, but there is some distortion
- Recovering a good spectrum is not trivial with a fairly narrow band detector
- Interferometric measurements have been influenced by:
 - splitter efficiency is not sufficient
 - hard to obtain good interferograms with narrow band detectors

CDR scan (16.11.09) Integrated intensity [mV] 11F 10 20 15 25 30 35 5 10 Stage position [mm] 10000 Intensity 35000 30000 25000F 20000 15000 10000 E 5000 F 100 2040 60 80 120Frequency [Hz]

Interferometric measurements:

Royal Holloway University of London

- A similar system to measure CSR has been installed at DIAMOND, UK
 - Millimeter Wave Technology (MMT) group at RAL confirmed a low splitter efficiency of Mylar and Kapton films in multi-mm wavelength range
 - MMT suggested to use an undoped Silicon wafer instead
 - Silicon wafer has been ordered
 - Slightly more difficult alignment as Silicon is opaque for laser, but ...
- Young researcher's grant (CRF) from the University of London
 - Mirror actuators for interferometer
 - The perform a beam based alignment of the interferometer
 - Translation stage for multiple detectors

• We will try a broadband pyroelectric detector to measure the interferograms July 12, 2010

2nd CDR target

Installation of the 2nd target:

- Small vacuum intervention in the CRM line in February 2010
- Installed the 2nd target
- Used the occasion to install an additional vacuum window as well
- Studies commencing as soon as CTF3 is back up

Modified optics

Modified optics system for 2010:

- Use of polariser to split the radiation
- Pyroelectric detector for interferometric measurements
- Linear stage and array of SBDs to measure CDR directly within a certain frequency band
- Use of silicon splitter as soon as possible

Problems

Difficulties encountered whilst performing the experiment:

- Single electron spectrum prediction is questionable!
 - Electromagnetic simulations were started and some initial, very promising results have been obtained;
- A broadband detector is required!
 - ultrafast, room-temperature, and highly sensitive one
- Or a single shot spectrometer system is needed!
 - a grating spectrometer is considered.
- Limited access to the experimental area!
 - delays R&D process

A new program is being discussed with Millimetre Wave Technology Group based at RAL:

• Joint interest in development of an ultrafast broadband room-temperature and highly sensitive Schottky Barrier Diode detector

A microwave lab is being built at RHUL:

- Spectrometer tuning and alignment;
- Transmission measurements of various components;
- Detector Calibration;
- Novel THz radiation detector development with nano-physics and MMT groups;
- Involve UG students in the research

Experiment:

Royal Holloway University of London

- Continue experimental work at CTF3;
- Measure spectrum with broadband pyroelectric detector to verify our approach for longitudinal bunch profile reconstruction using Kramers-Kronig relation;
- Demonstrate efficiency of the dual target system to avoid coherent backgrounds;
- Develop a fast broad band SBD detector with MMT group;
- Perform measurements with a few SBD detectors with different bands plus correlation studies with RF pickup and streak camera;
- In long term develop a single-shot grating based spectrometer system.

Simulation studies:

- develop a model to predict DR from our dual target to normalise our spectra;
- advanced simulation of a possible vacuum chamber prototype for the generation of diffraction radiation in CLIC