Resonant Diffaction Radiation from inclined Targets

Gero Kube DESY / MDI gero.k b @d d k u e@desy. e

Entroduction Smith-Purcell Radiation Resonant Diffraction Radiation

RDR Monitor for Bunch Length Diagnostics

Bunch Length Diagnostics

purpose \blacksquare

high resolution measurement ← nachine tuning

o principles

\blacktriangleright **streak** camera

courtesy O.Grimm (DESY)

courtesy B.Steffen (DESY) **and more …**

EO techniques RF techniques

Gero Kube, DESY / MDI Warrington / UK, July 12-13, 2010

Courtesy O. Grimm (DESY)

Basic Principle of CRD

 \bullet single electron synchrotron radiation spectrum

circular motion, $E = 130$ MeV, $\rho = 1.6$ m

longitudinal coherence \bullet

GEMEINSCHAFT

- synchrotron radiation spectrum for charge 1 nCb
	- $\mathbf{P}^{\mathbf{r}}$ circular motion, $E = 130$ MeV, $\rho = 1.6$ m

Gaussian (line) bunch

Gero Kube, DESY / MDI Warrington / UK, July 12-13, 2010

synchrotron radiation spectrum for charge 1 nCb

 $\mathbf{P}^{\mathbf{r}}$ circular motion, $E = 130$ MeV, $\rho = 1.6$ m

Spiked bunch

FWHM=70 µm

Courtesy O. Grimm (DESY)

synchrotron radiation spectrum for charge 1 nCb

 $\mathbf{P}^{\mathbf{r}}$ circular motion, $E = 130$ MeV, $\rho = 1.6$ m

Spiked bunch

FWHM=40 µm

Courtesy O. Grimm (DESY)

GEMEINSCHAFT

- synchrotron radiation spectrum for charge 1 nCb
	- $\mathbf{P}^{\mathbf{r}}$ circular motion, $E = 130$ MeV, $\rho = 1.6$ m

Double Gaussian Bunch

Courtesy O. Grimm (DESY)

Basic Relation of CRD

Courtesy O. Grimm (DESY)

Double Gaussian Bunch

→Emission spectrum depends on *longitudinal* charge distribution

Radiation Generation

radiation generation via particle electromagnetic field

electric field lines

$$
\left(\gamma = E/m_0c^2\right)
$$

E : total energy $m_0 c^2$: rest mass energy

$$
\gamma \rightarrow \infty: \text{ plane wave}
$$
\n
$$
\Rightarrow mc^2 = 0 \text{ MeV}: \text{ light} \rightarrow \text{ ,real photon}^{\circ}
$$
\n
$$
\Rightarrow \text{ ultra relativistic energies}: \text{ idealization} \rightarrow \text{ ,virtual photon}^{\circ}
$$

exploit analogy between real/virtual photons:

- light reflection/refraction at surface
- light diffraction at edges
- $\overline{}$ - light diffraction at grating \leftrightarrow Smith-Purcel
- \leftrightarrow backward/forward transition radiation (TR)
- \leftrightarrow diffraction radiation (DR)
	- \leftrightarrow Smith-Purcell radiation

Radiation Source

reminder: coherent radiation diagnostics \bullet

 \blacktriangleright **principle:** bunch length/shape dependent emission spectrum of coherent radiation

with

- spectral decomposition and Fourier transform: $\mathcal{L}_{\mathcal{A}}$
	- \rightarrow bunch length and shape
- transition radiation (TR), diffraction radiation (DR): \mathcal{L}
	- polychromatic angular disributi
		- \rightarrow spectrometer for decomposition

- Smith-Purcell radiation (SPR):
- hromatic angular disribution (virtual) photon diffraction at 1D Bravais-structure
	- grating provides discrete momenta $p_n = n \, 2 \pi \hbar / d$
	- angular distribution wavelength-dependent

 \rightarrow no additional spectrometer

SPR Bunch Length Diagnostics

bunch length monitor based on Smith-Purcell radiation \bullet

Courtesy G. Doucas, V. Blackmore (Oxford)

critical items \bullet

- number of detectors limits the number of points for reconstruction
	- \rightarrow interferometer: about 200 points
- influence of the grating structure

Measurement at 45 MeV, FELIX

G. Doucas et al., PRST 9 (2006) 092801

Experiment at 28.5 GeV, SLAC

Courtesy G. Doucas, V. Blackmore (Oxford) V.Blackmore et al., PRST 12 (2009) 032803

Smith-Purcell Radiation

MHOLTZ GEMEINSCHAFT

- R_n radiation factor, $R_n = R_n(\gamma, \theta, \Phi, \alpha_{black})$
- θ . Φ angle of observation
- evanescent scale, $\kappa = h_{int}^{-1} \cdot \sqrt{1 + (\beta \gamma \cos \Phi)^2}$ κ
- h_{int} interaction length

$$
h_{int}\,=\,\tfrac{\beta\gamma}{4\pi}\cdot\lambda
$$

P.M.van den Berg, J.Opt.Soc.Am. 63 (1973) 1588

 $n\lambda = D(1/\beta - \cos \Theta)$

radiation factor o.

Counts

 $\frac{a}{\sqrt{2}}$

 $\frac{2}{R}$

G.Kube et al., Phys.Rev. E 65 (2002) 056501

SP Radiation Factors

radiation factors for blazed gratings **volume strip grating** \bullet

P.M.van den Berg, J.Opt.Soc.Am. 63 (1973) 1588

- pronounced resonance structures \rightarrow Wood-Rayleigh anomalies (optical grating theories)
- strong modification of $\frac{d\sigma}{d\lambda}$ d *U*
	- \rightarrow decreased sensitivity on bunch length

G.Kube, Proc. DIPAC '03, Mainz (Germany) 2003, p.40

G.Kube, Nucl.Instrum.Meth. B 227 (2005) 180

solution for reflected and transmitted field \rightarrow modal expansion

- limit $h \rightarrow 0$:
	- \rightarrow influence of resonances to neglect
	- \rightarrow better suited for bunch length diagnostics

SPR and RDR

Smith-Purcell radiation from periodic stack of diffraction radiators \bullet

A.P.Potylitsyn, Nucl.Instrum.Meth. B 145 (1998) 60

A.P.Potylitsyn and M.N.Strikhanov, Rus.Phys.J. 45 (2002) 905

Resonant Diffraction Radiation

Resonant diffraction radiation from inclined target \bullet

A.P.Potylitsyn, P.V.Karataev and G.A.Naumenko, Phys.Rev. E 61 (2000) 7039

RDR from inclined Tar gets

… and application for bunch length diagnostics

A.P.Potylitsyn, D.V.Karlovets, G.Kube, Nucl.Instrum.Meth. B 226 (2008) 3781

critical items \blacksquare

- number of detectors limits the number of points for reconstruction
	- use of one/two detectors at fixed positions
	- variation of grating inclination angle wrt. beam axis
	- \rightarrow reduced number of detectors has additional advantage: sensitivity of each individual detector must be known with high accuracy (reconstruction of bunch shape relies on absolute intensities)
- \rightarrow influence of the grating structure
	- use strip grating instead of reflection grating to avoid resonance structures
	- \rightarrow strip grating allows to exploit transmitted and reflected radiation at the same time

proposed DITANET project 0

- experiment to be carried out at 100 MeV injector linac of Swiss Light Source (PSI) Þ.
- develop monitor for beam tuning (no high resolution measurements) Þ
- collaboration between DESY, PSI and Tomsk Polytechnic University (Russia) Þ
- looking for Experienced Researcher

… still searching for suitable candidate

RDR for Bunch Length Diagnostics

 \blacktriangleright coherence condition

$$
n\lambda = d\left(1/\beta - \cos \Theta\right)
$$

RDR for Bunch Length Diagnostics

 \bullet principle

RDR for Bunch Length Diagnostics

principle \bullet

Optical Analogon

Analogy from classical optics: semi-transparent grating

Gero Kube, DESY / MDI Warrington / UK, July 12-13, 2010

intensity dependence \bullet

- Þ detector 1: increase of grating tilt angle Θ_0
	- \rightarrow wavelength shift to smaller λ
	- \rightarrow reduced contribution of coherent emission
	- \rightarrow
- detector 2: increase of grating tilt angle Θ_0
	- \rightarrow wavelength shift to larger λ
	- \rightarrow increased contribution of coherent emission
- **intensity decrease** → **intensity increase**

parameter optimization to increase sensitivity...

RDR Signal Ratio

difficulty \bullet

- \triangleright knowledge of absolute intensity required
- spectral response of each individual element must be known to high level of accuracy

- ratio sensitive on beam size variation
- prerequisite: detectors with flat response

\longrightarrow **simple monitor for beam tuning**

RDR Power Estimation

coherent RDR yield for parallel orientation

\rightarrow **high power level even allows use of broadband room-temperature detectors**

G. Naumenko, A. Potylitsyn, G. Kube, O. Grimm, V. Cha, Yu. Popov, Nucl.Instrum.Meth. A 603 (2009) 35

 \bullet

 \bullet

Summary & Conclusion

- coherent radiation as tool for bunch length diagnostics
- **S** Smith-Purcell radiation suitable radiation source
	- \rightarrow dispersive emission process \rightarrow no additional spectrometer required
	- If influence of grating structure \rightarrow modification of intensity distribution

- Smith-Purcell radiation from flat strip grating
- radiation from inclined target O
	- resonant diffraction radiation
- monitor concept for bunch length monitoring based on RDR
	- \triangleright experimental proof of principle still pending

