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 Bunch Length Monitoring by RFD: principle and calibration

* RF Deflecting structures:
TW and SW

Performances

» General measurement setup:
beam profile and long. phase space meas.

effects of RFD structures

« Examples:
SPARC
LCLS
FLASH



Slice parameter measurements by RFD: principle
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Callbratlon measurements @ SPARC
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The coefficient K., can be
directly calculated measuring
the bunch centroid position on
the screen for different values
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RF Deflecting structures: TW case

Field As in the case of accelerating
sections, we have TW and SW PRF
cavities. In general RFDs are
multi-cell devices working on the
TM,,-like mode.

Both the E and the B field
contribute to the total deflection.

The transverse force is uniform
over a wide region inside the iris
aperture

In TW devices the iris aperture (a)
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RF Deflecting structures: {)eak E fieljd and\polarization
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Analytical approx.
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possible polarities of
the deflecting field,
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foreseen to introduce
an azimuthal
asymmetry in the
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RF Deflecting structures: E and B field components

fre=2.856 GHz
MODE 2r/3
Analytical approx.
a=20mm, t=10mm
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The ratio between the magnetic and the electric deflection depends on the iris diameter. For small irises the
deflection is magnetic but for usual TW structures also the E field contrbute to the deflection.

Both E and B field have a longitudinal modulation given by the irises periodicity but the total deflecting field has a
smaller modulation due to the partial compensation between the two E and B contributions.

Also the phase has almost a linear phase advance.
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RF Deflecting structures: SW case (SPARC RFD)

E, B field profiles

RFD in the LNF
oven

SW structures are multi
cell devices working,
for example, on the n-
mode. Theses
structures have, in
general a  higher
efficiency per unit
length with respect to
the TW ones but the
maximum number of
cells is limited to few
tens because of mode
overlapping. They

' requires circulators to

protect the RF source

Input coupler




SPARC RF Deflector

PARAMETERS

Deflecting mode SW, & PS SWITCH
Number of cells 5

+¢ f LOAD
Frequency 2.856 GHz

Quality factor (Q,) 16000

Coupling coefficient () 1

Max. input power (Pge yax) [2 MW

Transv. shunt imp. (R;) 2.4 MQ

An example of SW structure is the
Defl. voltage @ Prr wax (V) |3 MV SPARC RFD. It is a 5 cells SW

Max. surf. E field (Epeax) |50 MVIm  |strycture working on the m-mode at

2.856 GHz and fed by a central coupler
with coupling coefficient equal to 1.
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RF Deflecting structures: SW vs TW performances
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RF Deflecting structures: SW vs TW other characteristics

SW TW
Efficiency per unit :
length High Low
: : _ Proportional to the group velocity and
Filling time Proportional to the quality factor:generally length: generally fast (~0.1 s @

slow (~us @ 2.856 GHz)

L=1m)

Maximum number of
cells

The maximum number of cells is limited to
about 15 because of mode overlapping

Lupto 3min S band

Deflecting field vs. #of
cells N for a given Pgg i,

N1/2

(1-e N/t

Power system

A circulator is generally needed to protect
the klystron

Circulator not necessary.

Temperature sensitivity

Necessity of an automatic tuning system
or of a very good temperature stabilization

Less temperature sensitivity

Beam impact

low

High

Resolution vs. freq.

1/f34 (N fixed)

1/f2 (L fixed, small dissipation)




Fx, v,bJRF*dEz/dx [arb.units]

a) The Panofsky-Wenzel

theorem relates the RFD
transverse deflecting
voltage and the longitudinal

electric field gradient;

b) The transverse deflecting
voltage and the longitudinal
one are 90 deg out-of-phase

RF Deflecting structures: induced energy spread

Transverse force and deflecting field components
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RF Deflecting structures: transport matrix of a single cell

RFD Correlation tz-(Yout Y ourt) Dispersion terms given by the RFD deflecting
allowing long. Profile measurements voltage if we are on crest (pg=0deg)
E, V E
_ defl ™" RF . __ T defl _ defl
B=- Sm(¢RF) Edeﬂ — C = COS(¢RF)
EB
Vy

Energy variation due to the dre=0 deg
longitudinal e-field off axis




General meas. setup: beam profile measurements

TRIPLET
SCREEN 1 ~4m ~0.4m for Q-SCAN
UNDULATOR

E—150 Mev

ul;

For beam profile and transv.
| slice emittance the beam
image is taken on the screen
1. The slice beam emitt. is
measured by the quad.scan.




Beam profile measurements: measurement@SPARC (1/2)

Electron Bunch from RF injector
Initial velocity By ~ 0.994 (4MeV)
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VELOCITY BUNCHING MEASUREMENTS

S g If the beam injected in a long accelerating structure at the
Phase -90° Phase 90° crossing field phase and it is slightly slower than the phase
s G il RF (Traveling Wave) |~ velocity of the RF wave, it will slip back to phases where
’ Phase velocity fon ~ I the field is accelerating, but at the same time it will be
B=po chirped and compressed.
B < Bo (head)
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quasi-Gaussian long. & [ "7 A
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In this condition bunch N I S 'J' ___________________________________
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Phase shift S1 (deg)



Beam profile measurements: measurement@SPARC (2/2)
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The longitudinal beam
profile measurements are
crucial for this experiment
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Beam profile: meas

y (mm)

Profile Monitor OTRS:IN20:571 14—Jun—2008 09:49:40

urement@ LCLS (courtesy P. Emma)

Use Two Different Profile Monitor LOLAZLI3O:335 01 -Apr-2008 12:36:0¢
Transverse RF Deflectors to
Measure Bunch Length at 135
MeV and also at 13.6 GeV
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Beam profile: measurement@FLASH (courtesy C. Gerth)
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General measurement setup: longitudinal phase space
~04m ~04m TRIPLET

UNDULATOR — —> LINAC
----------------------------------------------------- or - -
——————————— —
SCREEN2 W -
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= —
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The longitudinal phase space can be characterized using the
combination of RFD and dipole. In this case the beam is projected
into the screen 2. In order to have enough longitudinal resolution
the vertical dimension at the screen position has to be taken
under control. From the phase space picture the slice energy
spread can be extrapolated by slicing the beam vertically and
measuring the beam thickness in energy as function of time.




Long phase space: virtual measurement
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Long phase space: subtraction of the RFD contribution to o

Eor each slice The contribution of the deflector to the
o2 + o2 _ 52 slice energy spread can be taken into

2 2 2 E E_RFD 1 — YE _MIS 1 ;
Oy + 0% wip = JE_MIS::> £ - account performing ~ two
Op+O0; pep 2 =0 s 2 measurements at two different
g , deflecting voltages and using the
~ following formulae to evaluate the

sigma o,5 rep Of €ach slice.

2 2
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RF 2 RF 2 _ 2 . 2
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Long phase space: effect of long RFD structures

E, E

E

156.2

Z Z

156+
If we consider a long RFD, we can

have effects also on the measured
average energy of each slice
because the bunch head-tail rotate
along the deflector and experience a
non-zero average electric field

1558}

Energy [MeV]
o
an
o

155.4+

155.2¢

Example:
Assuming a Lgp=0.8 m @ SPARC T




Long phase space: measurement @ SPARC
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From the plot the slice energy spread can be extrapolated . =-'*
and compared with simulations. The main discrepancy E pe / e
between the simulations and the experimental data is given 501"...: N\ i
by the RFD contribution that has been estimated to be £ 4 o N / .'.
~15 keV. B 5 e, /.
The emittance contribution has not been subtracted from & 2o o o
the measurements, but it has been estimated to be less E 10 %o, -

than 10%. 0 1'.



Long phase space: measurement @ LCLS (courtesy P. Emma)

Profile Monitor Y AGS:IN20:995 10-Dec—2008 20:39:29
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Advanced RFD structures: circular polarized RF deflector

[Haimson et al, AIP, 647, 2002]

/ V11

Rotating
along the
bunch
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Circular polarized RF deflectors: measurements

[J. Haimson et al, AIP, 737, 2004] —
- e T W Number of Cavities 2
¥ - A ‘ Operating Frequency ~17 GHz
| ' Nominal Beam Energy 15 MeV

RF Deflection Angle ~27 mradian
Drift Distance 2m
Beam Deflection @ Screen 57 mm
Peak RF Input Power 734 kW
Normalized Emittance 2.8 mm.mrad
Longitudinal resolution ~100 fs
Bunch length ~5 mm




Advanced RFD structures: Aluminum RF deflectors

The new RFD of the
CTF3 Combiner
Ring have been built
in  aluminium to
reduce the cost and
the delivery.

The cells have been
machined, clamped
together with tie rod to
guarantee the RF
contacts and welded.

The structure has
been installed with

| . .,,.;h o : 3 SuUcCcess without
| |u ey ‘I"I"-l _' ogserving MP
a8 phenomena.

D. Alesini et al.,, PAC
09.




CONCLUSIONS

RFDs are fundamental devices for both longitudinal phase space characterization
allowing reaching resolution below 10 fs.

SW or TW structures can be used depending on the particular application.

The measurement setups and the experimental results, in the SPARC case, have
been shown and discussed (the RFD technique has been fundamental in the
velocity bunching experiment at SPARC).

A possible solution to take into account the contribution of the RFD in the energy
spread slice has been also illustrated.

Important new results have been also reached in other accelerator facilities like
LCLS or FLASH.

Circular polarized RFD deflectors allow the measurement of the long. Phase space
without dipoles.

New important results have been recently obtained in RFD fabrication with
alluminum

THANK YOU



