RF Deflecting Structures for Bunch Length Monitoring

D. Alesini

(LNF-INFN, Frascati, Rome)

DITANET 2nd Topical Workshop on Longitudinal Beam Profile Measurements Cockcroft Institute, UK on July 12th/13th 2010

OUTLINE

- Bunch Length Monitoring by RFD: principle and calibration
- RF Deflecting structures:

TW and SW

Performances

General measurement setup:

beam profile and long. phase space meas.

effects of RFD structures

• Examples:

SPARC LCLS FLASH

Slice parameter measurements by RFD: principle

 $\sigma_{y_s}^2 \cong K_{cal}^2 \sigma_{t_B}^2 + \sigma_{y_B}^2$

The different types of measurements that can be done with RFDs are based on the property of the transverse voltage (V_{DEFL}) to introduce a **linear** correlation between the longitudinal coordinate of the bunch (t_B) and the transverse one (vertical, in general) at the screen position (y_S).

$$y_{S} \cong \left(\frac{V_{DEFL}}{E/e}\omega_{RF}L\right)\left(t_{B} + \frac{\Delta\phi_{RF}}{\omega_{RF}}\right)$$

$$K_{cal}$$

$$R_{34} = \sqrt{\beta_{S}\beta_{defl}}\sin\Phi_{s_defl}$$

resolution

$$\sigma_{t_B RES} = \frac{\sigma_{y_B}}{K_{cal}} = \frac{\sqrt{\varepsilon_y \beta_S}}{K_{cal}}$$

Calibration: measurements @ SPARC

2

11

13

x [mm]

12

the screen for different values

of the RFD phase

RF Deflecting structures: TW case

HField As in the case of accelerating sections, we have **TW and SW cavities**. In general RFDs are multi-cell devices working on the TM₁₁-like mode.

Both the **E and the B** field contribute to the total deflection.

The transverse force is uniform over a wide region inside the iris aperture

In TW devices the **iris aperture (a)** is the most important parameter to fix the deflection efficiency and group velocity

RF Deflecting structures: peak E field and polarization

RF Deflecting structures: E and B field components

f_{RF}=2.856 GHz MODE 2π/3 Analytical approx. a=20mm, t=10mm

The ratio between the magnetic and the electric deflection depends on the iris diameter. For small irises the deflection is magnetic but for usual TW structures also the E field contrbute to the deflection. Both *E* and *B* field have a longitudinal modulation given by the irises periodicity but the total deflecting field has a smaller modulation due to the partial compensation between the two *E* and *B* contributions.

smaller modulation due to the partial compensation between the two E and A

Also the phase has almost a linear phase advance.

Traveling wave deflectors: performances

 $E_B = 2 \text{ GeV};$ $\varepsilon = 1 \text{ mm mrad};$ a = 20 mm @ 2.856 GHz; a = 5 mm @ 11.424 GHz; $\beta_S = 1 \text{ m};$ L = 4 m

RF Deflecting structures: SW case (SPARC RFD)

E, B field profiles

RFD in the LNF oven SW structures are multi cell devices working, for example, on the π mode. Theses structures have, in general a higher efficiency per unit length with respect to the TW ones but the maximum number of cells is limited to few tens because of mode overlapping. They requires circulators to protect the RF source from reflections.

RFD installed in SPARC

SPARC RF Deflector

PARAMETERS	
Deflecting mode	SW, π
Number of cells	5
Frequency	2.856 GHz
Quality factor (Q ₀)	16000
Coupling coefficient (β)	1
Max. input power (P _{RF_MAX})	2 MW
Transv. shunt imp. (R _T)	2.4 M Ω
Defl. voltage @ P _{RF_MAX} (V _T)	3 MV
Max. surf. E field (E _{PEAK})	50 MV/m

An example of SW structure is the SPARC RFD. It is a 5 cells SW structure working on the π -mode at 2.856 GHz and fed by a central coupler with coupling coefficient equal to 1.

RF Deflecting structures: SW vs TW performances

RF Deflecting structures: SW vs TW other characteristics

	SW	TW
Efficiency per unit length	High	Low
Filling time	Proportional to the quality factor:generally slow (~μs @ 2.856 GHz)	Proportional to the group velocity and length: generally fast (~0.1 μs @ L=1m)
Maximum number of cells	The maximum number of cells is limited to about 15 because of mode overlapping	L up to 3 m in S band
Deflecting field vs. #of cells N for a given P _{RF in}	N ^{1/2}	(1-e ^{-αN})/α
Power system	A circulator is generally needed to protect the klystron	Circulator not necessary.
Temperature sensitivity	Necessity of an automatic tuning system or of a very good temperature stabilization	Less temperature sensitivity
Beam impact	low	High
Resolution vs. freq.	1/f ^{3/4} (N fixed)	1/f ² (L fixed, small dissipation)

RF Deflecting structures: induced energy spread

RF Deflecting structures: transport matrix of a single cell

Beam profile measurements: measurement@SPARC (1/2)

VELOCITY BUNCHING MEASUREMENTS

If the beam injected in a long accelerating structure at the crossing field phase and it is slightly slower than the phase velocity of the RF wave, it will slip back to phases where the field is accelerating, but at the same time it will be chirped and compressed.

operated with a We quasi-Gaussian long. laser profile ~7.5 ps FWHM long with 300 mm transverse spot size and 300 pC. The beam acceleration on crest corresponds to the phases around -75 deg. In this condition bunch is length length measured at the linac exit was 2.5 ps with an energy of 150 MeV.

Beam profile measurements: measurement@SPARC (2/2)

Beam profile: measurement@ LCLS (courtesy P. Emma)

Beam profile: measurement@FLASH (courtesy C. Gerth)

General measurement setup: longitudinal phase space

The longitudinal phase space can be characterized using the combination of RFD and dipole. In this case the beam is projected into the screen 2. In order to have enough longitudinal resolution the **vertical dimension at the screen position has to be taken under control**. From the phase space picture the slice energy spread can be extrapolated by slicing the beam vertically and measuring the beam thickness in energy as function of time.

Long phase space: virtual measurement

Long phase space: subtraction of the RFD contribution to $\sigma_{\rm F}$

two

the

different

two

2

t [ps]

4

6

The contribution of the deflector to the For each slice slice energy spread can be taken into account performing measurements at deflecting voltages and using following formulae to evaluate the sigma $\sigma_{\text{vB RFD}}$ of each slice. $\left(\frac{\omega_{RF}}{c}\hat{V}_{DEFL_{1}}\right)^{2}\sigma_{y_{RFD}}^{2} - \left(\frac{\omega_{RF}}{c}\hat{V}_{DEFL_{2}}\right)^{2}\sigma_{y_{RFD}}^{2} = \sigma_{E_{MIS_{1}}}^{2} - \sigma_{E_{MIS_{2}}}^{2}$ 200 ---- reconstructed V_{RFD}=2 MV 180 reconstructed V_{RFD}=5 MV $\sigma_{y_RFD}^{2} = \left(\frac{c}{\omega_{RF}}\right)^{2} \frac{\sigma_{E_MIS_1}^{2} - \sigma_{E_MIS_2}^{2}}{\hat{V}_{DFFL_1}^{2} - \hat{V}_{DFFL_2}^{2}}$ reconstructed by difference 160 - 🤇 real before RFD 140 [ke/] 120 100 $\sigma_{E_{RFD}} \cong \frac{\omega_{RF}}{c} \hat{V}_{DEFL} \sigma_{y_{RFD}} \quad [eV]$ Energy 80 60 40 $\sigma_{E}^{2} = \sigma_{E}^{2} - \sigma_{E}^{2} - \sigma_{E}^{2}$ 20 0└ -6 -2 0

Long phase space: effect of long RFD structures

If we consider a long RFD, we can have effects also on the measured average energy of each slice because the bunch head-tail rotate along the deflector and experience a non-zero average electric field

Example: Assuming a L_{RFD}=0.8 m @ SPARC

Long phase space: measurement @ SPARC

From the plot the slice energy spread can be extrapolated and compared with simulations. The main discrepancy between the simulations and the experimental data is given by the **RFD contribution** that has been estimated to be \sim 15 keV.

The **emittance contribution** has not been subtracted from the measurements, but it has been estimated to be less than 10%.

Long phase space: measurement @ LCLS (courtesy P. Emma)

Advanced RFD structures: circular polarized RF deflector

Circular polarized RF deflectors: measurements

[J. Haimson et al, AIP, 737, 2004]

Number of Cavities	2
Operating Frequency	~17 GHz
Nominal Beam Energy	15 MeV
RF Deflection Angle	~27 mradian
Drift Distance	2 m
Beam Deflection @ Screen	57 mm
Peak RF Input Power	734 kW
Normalized Emittance	2.8π mm.mrad
Longitudinal resolution	~100 fs
Bunch length	~5 mm

Advanced RFD structures: Aluminum RF deflectors

The new RFD of the **CTF3 Combiner Ring** have been built in <u>aluminium</u> to reduce the cost and the delivery.

The cells have been machined, clamped together with tie rod to guarantee the RF contacts and welded.

The structure has been installed with success without observing MP phenomena.

D. Alesini et al.,, PAC 09.

CONCLUSIONS

RFDs are fundamental devices for both longitudinal phase space characterization allowing reaching *resolution below 10 fs*.

SW or TW structures can be used depending on the particular application.

The measurement setups and the experimental results, in the **SPARC case**, have been shown and discussed (the RFD technique has been fundamental in the **velocity bunching** experiment at SPARC).

A possible solution to *take into account the contribution of the RFD in the energy spread slice* has been also illustrated.

Important new results have been also reached in other accelerator facilities like *LCLS or FLASH.*

Circular polarized RFD deflectors allow the measurement of the long. Phase space without dipoles.

New important results have been recently obtained in RFD fabrication with alluminum

