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 Need to be able to monitor the beam at all energies.

 D3 (RF separation dipole) chosen as main source
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 Solution: Add an undulator to increase the amount of 
radiation at low beam energy.
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 Light at the extraction mirror:
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(anticlockwise beam)



LHC synchrotron light monitors

•Implemented:
•Abort Gap monitor

•Slow and Fast cameras for transverse profile

•In design:

•Longitudinal density monitor

LHC Beam
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Optical arrangement
 A 4.8m optical table containing

 One motorized steering mirror
 Two spherical focusing mirrors
 Motorized optical delay line to select light source

 Cameras get 90% of the light
 Beam splitter separates 10% for abort gap monitor
 Second splitter to separate 10% of this for LDM

 Identical arrangement for each beam
8



BSRT
 Intensified CCD camera 

can image a single pilot 
bunch

 Fast gated camera for 
bunch-by-bunch 
measurements

 Generally good agreement 
with wire scanners
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LHC bunch structure
 Bunch length 300-600 ps RMS
 Bunch separation 25ns 

10



Abort Gap Monitor
 Particles occupying the 3µs abort gap would receive a 

partial deflection by the abort kicker.
 The population gap must be monitored and compared to 

magnet quench thresholds
 A gated PMT is used
 Sensitivity ~107 protons / 100ns

at 3500 GeV
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New Optical system  fully equipped in LHC 
pt4Two bunches seen by 

the Abort gap 
monitor

bucket 1 bucket 1201

3µs



Synchrotron light with ions
 Lead ion run planned for

next year
 γ scales by 82/208

compared to photons so
undulator radiation in IR
at injection

 Coherent sync radiation
increases emission at
higher energy

 Also smaller bunches.

⇒ sync light monitoring severely 
limited for ions at injection 
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What’s needed:
 Photon detector for longitudinal profile.
 Measure proton density as a function of time with 50ps 

resolution.
 Measure the bunch parameters (shape, length, 

density) with 1ms integration
 Sensitive to 5x105 protons in the bunch tails or in ghost 

bunches, ie 1/30000 of the main bunch, with 10s 
integration
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 Abort gap monitor gets 10% of the incoming light
 I can get 10% of that
 So maximum available is 1 photon per 108 protons at 

1TeV
 Which means ~1500 photons for a full bunch – plenty!
 But only 1 photon every 200 turns at the maximum 

sensitivity.
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What’s available:



Proposal:
 Photon counting with Geiger-mode Avalanche Photo-

Diode (APD)
 Photon arrival times collected in Time-to-Digital 

converter card synchronised to bunch clock
 Integration over many turns to build up profile
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APD response – id100

 Afterpulsing decays slowly
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APD response – id100

 Afterpulsing decays slowly
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APD response – id100

 Afterpulsing decays slowly
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APD response – id100

 Afterpulsing decays slowly
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APD response - MPD

 Sharp afterpulsing – easier to correct for
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Signal correction

 Must take into account:
 Skewing due to deadtime
 Afterpulsing
 Pile-up
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Bunch-by-bunch

 Bunch current for first few PS batches. Raw counts 
fluctuate since deadtime > bunch spacing.

Bunch number ->
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 0.5 photons per bunch, 195ns deadtime
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Correction
 How many photons does the detector miss?

 Sum the counts over the previous d bins, where d is the 
deadtime 

 Divide by the total number  of passes to obtain the 
probability that the detector was unavailable.

 An ‘ideal’ detector would count 
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N= number of passes, x=actual counts, C= corrected counts



Optimum photon rate
Too few 
photons 

Noisy 
profile

Long 
integration 

time

Too many 
photons

Almost 
always in 
deadtime

Noisy 
correction
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Or

Best profile with 1 photon 
per deadtime period



Afterpulsing
 Long-lasting effect
 Can remove by deconvolution
 Major source of noise
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 Possibility of two photons arriving at the same time.
 Large number of particles, small chance of emitting a photon:

Poissonian distribution.
 If the number of counts expected in a particular bin (given the

proton density) is λ, then the probability of having a given
number k of photons emitted is

 If Ci/N is the probability that the ideal detector would see at least
one photon then

 The expected number of photons, which is now directly
proportional to the proton density, is then given by

27

Pile-Up



Limited dynamic range

28

 Theoretical limit due to masking of ghost bunches by 
deadtime

 Increasing integration time should increase dynamic 
range

 In fact, it increases only slowly, due to afterpulsing



Limited dynamic range
 Main limiting factor is noise due to afterpulsing
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Example: 1000 sec integration, 3% afterpulsing



The solution

Free-running APD gets 
about 10-6 of the light on 
the extraction mirror

Gated APD gets about 
1% of the light on the 
extraction mirror

Fi
lte

rs

Filters
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 90 photons per bunch
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 90 photons per bunch, with gating
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Gated APD - low rate

 Pulse is completely hidden, no effect on count rate
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 Not so good with faster gate
 Strong pulses completely destroy gate information
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Optical gate

 Electro-optic deflector:
 High speed
 High extinction ratio
 No wavelength dependence
 Reliability – no moving parts
 No HV pulse needed

35
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Optical gate

 Electro-optic deflector:
 High speed
 High extinction ratio
 No wavelength dependence
 Reliability – no moving parts
 No HV pulse needed
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Detector location
 Weak deflection -> need long gap between deflector 

and mask/lens.
 Need to collimate and polarize before entering 

deflector
>>> Deflector on the optical table

 Uncertain of APD performance with radiation
 Keep APDs in the electronics rack

>>> Couple light into optical fibers
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Conclusions:
 A longitudinal profile of the LHC beams can be taken 

in the specified integration times
 Average bunch length in 1 ms
 Full bunch-by-bunch profile in 10 s 

 Suitable correction algorithms can compensate for the 
detector imperfections

 An optical gate is necessary to achieve high dynamic range
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Thanks!

Adam Jeff
CERN / University of Liverpool adam.jeff@cern.ch
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What next:
 Lab test the optical gate
 Prototype system ready soon
 Can’t do individual bunch lengths in 1 ms – might 

be possible with APD array?
 A (partial?) system will be installed this year
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Consider a main bunch which emits an average of A photons every time it passes the detector. This
is immediately followed by a ghost bunch whcih emits B photons per pass, B<<A. Then for each
pass:

countsB P B( ) P notA( )⋅:= P

The probabilities follow a Poisson distribution so the probability that the bunch does not emit is  

P notA( ) e A−
:=

A−

And the probability that the ghost emits at least one photon is 

P B( ) 1 e B−
−:=

The dynamic range of the detector is d, where B is the smallest detectable ghost and A=dB. Then

countsB e d− B⋅ 1 e B−
−( )⋅:=

d

This is a maximum when dB = 1, in other words when the main bunch emits an average of 1
photon per pass. The number of counts from the ghost bunch can then be estimated for various d:

where the last term is the number of passes in
one 10 second integration period (ignoring missed
passes through detector deadtime).

countsB d( ) e 1− 1 e

1−

d
−







⋅

10

89 10 6−
×

⋅:=

countsB 1000( ) 41.314=

countsB 10000( ) 4.133=

countsB 40000( ) 1.033=

So even with no noise the maximum dynamic range is 40,000

This treatment ignores the possibility of the detector coming up between the bunch and the
ghost. In practice therefore this is only true for the case where the ghost immediately follows the
main bunch. As the time between the two increases the detector becomes more sensitive.



 Realistic case with gating and smallest detectable ghost bunch



 Increased gate-off width -> increased sensitivity
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