A Longitudinal Density
Monitor for LHC
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D3 (RF separation dipole) chosen as main source

Photons Emitted per Proton per Turn

Reaching the Extraction Mirror, 200 to 900 nm
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Need to be able to monitor the beam at all energies.




e Solution: Add an undulator to increase the amount of

radiation at low beam energy.
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Total visible flux per proton
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Light at the extraction mirror:
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LHC synchrotron light monitors
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Implemented:
-Abort Gap monitor

-Slow and Fast cameras for transverse profile

In design:

-Longitudinal density monitor
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Optical arrangement

A 4.8m optical table containing
e One motorized steering mirror
e Two spherical focusing mirrors

e Motorized optical delay line to select light source
Cameras get 90% of the light
e Beam splitter separates 10% for abort gap monitor

e Second splitter to separate 10% of this for LDM

Identical arrangement for each beam



BSRT
Intensified CCD camera Beam |1

®

can image a single pilot
bunch _
Horizontal

Fast gated camera for 1.3 mm ~12mm
bunch-by-bunch

measurements

Generally good agreement ~ Vertical |
: - 0.9 mm 1.7 mm
with wire scanners



LHC bunch structure

* Bunch length 300-600 ps RMS
* Bunch separation 25ns

LHC (1-Ring) = 88.924 s
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SPS =7/27 LHC

Beam Gaps
L1 7, = 12 missing bunches (72 bunches on h=84)

e T, = 8 missing bunches (SPS Injection Kicker rise time = 220 ns.)
PS=1/11SPS

7, = 38 missing bunches (LHC Injection Kicker rise time = 0.94 ps.)

g 7, = 39 missing bunches ( " )

25ns spacin

7, = 119 missing bunches (LHC Dump Kicker rise time = 3 ps.)

P. Collier 12/6/2000



Abort Gap Monitor

Particles occupying the 3us abort gap would receive a
partial deflection by the abort kicker.

The population gap must be monitored and compared to
magnet quench thresholds

A gated PMT is used oy e 0
intensity | imensiy wu | pistory | istory Intensity bu | History intensity Sigma
Sens1t1v1ty ~107 protons / 100nS e Y b —T
at 3500 GeV \[
butket 1 bucket 1201
<€
3us
Two bunches seen by
the Abort gap
monitor
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Synchrotron Iigh’; with ions .

Lead ion run planned for
next year

Yy scales by 82/208
compared to photons so
undulator radiation in IR
at injection

Coherent sync radiation
increases emission  at
higher energy

Also smaller bunches.

photons per particle
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—— Protons
lons

2 3 4 5
TeV (protons) or equivalent (ions)

— sync light monitoring severely
limited for ions at injection
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k What’s needed:

Photon detector for longitudinal profile.

Measure proton density as a function of time with 50ps
resolution.

Measure the bunch parameters (shape, length,
density) with 1ms integration

Sensitive to 5x105 protons in the bunch tails or in ghost
bunches, ie 1/30000 of the main bunch, with 10s
integration
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What’s available:

Abort gap monitor gets 10% of the incoming light
[ can get 10% of that

So maximum available is 1 photon per 108 protons at
1TeV

Which means ~1500 photons for a full bunch - plenty!

But only 1 photon every 200 turns at the maximum
sensitivity.
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Proposal:

Photon counting with Geiger-mode Avalanche Photo-
Diode (APD)

Photon arrival times collected in Time-to-Digital
converter card synchronised to bunch clock

Integration over many turns to build up profile



APD response —id100
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* Afterpulsing decays slowly
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APD response —id100
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APD response —id100
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* Afterpulsing decays slowly
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* Afterpulsing decays slowly
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APD response - MPD
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* Sharp afterpulsing - easier to correct for
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Signal correction

* Must take into account:
e Skewing due to deadtime
o Afterpulsing
e Pile-up
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Total counts per

bunch
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Bunch number ->

Bunch current for first few PS batches. Raw counts
fluctuate since deadtime > bunch spacing.

22




350000

300000

250000

200000

150000

100000

50000

Counts

] oo ] o ] oo i o o oo i i ]

1234567 8 91011121314151617181920212223242526272829303132333435363738394041
Bin number (50ps bins)

* 0.5 photons per bunch, 195ns deadtime
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Correction

How many photons does the detector miss?

e Sum the counts over the previous d bins, where d is the
deadtime

e Divide by the total number of passes to obtain the
probability that the detector was unavailable.

An ‘ideal’ detector would count
X; N

= i—1
j=i—-d

i
N= number of passes, x=actual counts, C= corrected counts

Ci = —
P(up);
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Optimum photon rate

Too few : Long
Solsy Or integration

Too many Almost N
always in bt

phOtOIlS o correction

Best profile with 1 photon
per deadtime period




Afterpulsing

* Long-lasting effect
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—afterpulsing

—background

| |
A ] yr yJ

¢ Can remove by deconvolution

* Major source of noise
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Possibility of two photons arriving at the same time.

Large number of particles, small chance of emitting a photon:
Poissonian distribution.

If the number of counts expected in a particular bin (given the
proton density) is A, then the probability of having a given
number k of photons emitted is

ple)=

If C./N is the probability that the ideal detector would see at least
one photon then

p(0)=1—C/N=e"

The expected number of photons, which is now directly
proportional to the proton density, is then given by

31— _In(_CIN
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Limited dynamic range

Theoretical limit due to masking of ghost bunches by
deadtime

Increasing integration time should increase dynamic
range

In fact, it increases only slowly, due to afterpulsing
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Limited dynamic range

* Main limiting factor is noise due to afterpulsing

Nl | |
N / /

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

HHHHHHHHHHHH

Example: 1000 sec integration, 3% afterpulsing
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Gated APD gets about
1% of the light on the
extraction mirror

Free-running APD gets
about 1076 of the light on
the extraction mirror
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Counts (10s integration)

* 9o photons per bunch
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Counts (10s integration)
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- Gated APD - low rate
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 Pulse is completely hidden, no effect on count rate
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* Not so good with faster gate

* Strong pulses completely destroy gate information
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* Electro-optic deflector:
e High speed
e High extinction ratio
e No wavelength dependence

e Reliability - no moving parts
e No HV pulse needed
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* Electro-optic deflector: Mask
e High speed
e High extinction ratio
e No wavelength dependence

e Reliability - no moving parts
e No HV pulse needed
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Detector location

Weak deflection -> need long gap between deflector
and mask/lens.

Need to collimate and polarize before entering
deflector

>>> Deflector on the optical table

Uncertain of APD performance with radiation
Keep APDs in the electronics rack
>>> Couple light into optical fibers

£YE
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Conclusions:

A longitudinal profile of the LHC beams can be taken
in the specified integration times

e Average bunch length in 1 ms
e Full bunch-by-bunch profile in 10 s

Suitable correction algorithms can compensate for the
detector imperfections

An optical gate is necessary to achieve high dynamic range
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Thanks!
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What next:

Lab test the optical gate
Prototype system ready soon

Can’t do individual bunch lengths in 1 ms - might
be possible with APD array?

A (partial?) system will be installed this year



Consider a main bunch which emits an average of A photons every time it passes the detector. This
is immediately followed by a ghost bunch whcih emits B photons per pass, B<<A. Then for each
pass:

countsg := P(B)-P(notA)

The probabilities follow a Poisson distribution so the probability that the bunch does not emit is
P(notA) =e =

And the probability that the ghost emits at least one photon is
B e

The dynamic range of the detector is d, where B is the smallest detectable ghost and A=dB. Then
countsg:=e d'B-(l e B)

This is a maximum when dB = 1, in other words when the main bunch emits an average of 1
photon per pass. The number of counts from the ghost bunch can then be estimated for various d:

e

d j 10 where the last term is the number of passes in
; 6 one 10 second integration period (ignoring missed
passes through detector deadtime).

countsg(d) :=e 1-[1 —e

countsg(1000) = 41.314
countsg(10000) = 4.133

counts g(40000) = 1.033
So even with no noise the maximum dynamic range is 40,000
This treatment ignores the possibility of the detector coming up between the bunch and the

ghost. In practice therefore this is only true for the case where the ghost immediately follows the
main bunch. As the time between the two increases the detector becomes more sensitive.
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